FunASR微调模型时数据加载问题的分析与解决
在FunASR项目中进行模型微调时,用户可能会遇到一个常见错误:"forward() missing 4 required positional arguments: 'speech', 'speech_lengths', 'text', and 'text_lengths'"。这个错误通常与数据加载和处理环节有关,本文将深入分析问题原因并提供解决方案。
问题现象
当用户按照FunASR官方文档进行模型微调时,训练过程会抛出上述错误,导致训练中断。错误表明模型在前向传播时未能接收到预期的四个关键参数:语音数据、语音长度、文本数据和文本长度。
根本原因分析
经过对多个案例的研究,我们发现这个问题主要有以下几个潜在原因:
-
数据量不足:官方示例中仅提供了4条训练音频和2条验证音频,当batch_size设置较大时,可能导致无法组成完整的batch,从而产生空数据。
-
数据格式问题:虽然jsonl文件中的路径看似正确,但可能存在格式不规范或字段缺失的情况。
-
数据预处理环节异常:在数据加载到模型前的预处理阶段可能出现问题,导致关键参数未能正确传递。
解决方案
增加数据量
最直接的解决方案是扩充训练数据集。建议使用更大规模的数据集如AISHELL或Wenetspeech,确保有足够的数据组成完整batch。在实践中,训练集至少应有数百条样本,验证集也应有相应比例。
检查数据格式
确保jsonl文件格式完全符合要求,每个样本应包含以下关键字段:
- key:样本唯一标识
- source:音频文件绝对路径
- source_len:音频长度
- target:对应文本
- target_len:文本长度
特别注意路径是否正确,文件是否可访问。建议使用绝对路径以避免路径解析问题。
调整训练参数
可以尝试以下参数调整:
- 减小batch_size值
- 检查num_workers设置是否合理
- 验证dataset_conf中的配置是否正确
代码层面检查
深入模型代码,特别是数据加载部分:
- 检查Dataset类的实现,确保正确处理每条样本
- 验证collate_fn函数是否正确组合batch
- 确保数据预处理流程完整
最佳实践建议
- 始终先验证数据加载环节是否正常工作,可以单独测试数据加载代码。
- 对于小规模数据,适当减小batch_size并增加梯度累积步数。
- 使用官方提供的示例数据作为基准,逐步替换为自己的数据。
- 添加详细日志,跟踪数据从加载到输入模型的整个流程。
总结
FunASR模型微调时的数据加载问题通常源于数据量不足或格式不规范。通过扩充数据集、严格检查数据格式、合理配置训练参数以及深入理解数据加载流程,可以有效解决这类问题。建议用户在遇到类似错误时,首先从数据角度入手排查,这是大多数情况下问题的根源所在。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00