FunASR项目中的音频转写问题分析与修复
在FunASR这个语音识别开源项目中,近期发现了一个影响音频转写准确性的重要问题。这个问题出现在runtime/python/onnxruntime/funasr_onnx/sensevoice_bin.py文件中,涉及到两个关键的技术点。
问题背景
FunASR是一个功能强大的语音识别框架,支持多种语音处理任务。在最新的master分支代码中,开发人员发现当使用ONNX运行时进行音频转写时,会出现两个明显的问题:
- 类型错误:NumPy数组调用了PyTorch风格的argmax方法
- 逻辑错误:使用了不正确的unique函数实现
问题一:类型不匹配错误
在原始代码的第186行,开发者尝试对NumPy数组x调用argmax方法时,错误地使用了PyTorch风格的dim参数:
yseq = x.argmax(dim=-1)
这会导致运行时错误,因为NumPy的argmax方法并不接受dim参数。正确的NumPy实现应该是:
yseq = np.argmax(x, axis=-1)
这个错误直接导致程序无法继续执行,是必须首先修复的致命错误。
问题二:逻辑实现错误
在修复第一个问题后,第二个问题变得更加明显。原始代码在第187行使用了:
yseq = np.unique(yseq)
这与原始PyTorch实现中的torch.unique_consecutive函数有本质区别。np.unique会返回排序后的唯一值,而torch.unique_consecutive则保留原始顺序,仅去除连续重复的值。
这种差异会导致转写结果出现严重错误。例如,测试音频"en.mp3"的正确转写应为: "the tribal leader called for the boy and presented him with fifty pieces of gold"
但错误实现会输出: "the and of for with him fifty calledthe boy presented pieces goldtain tribal leader"
技术影响分析
这两个问题对语音识别系统的准确性产生了严重影响:
- 第一个问题直接导致程序崩溃,属于明显的实现错误
- 第二个问题更加隐蔽,会导致转写结果乱序,影响用户体验
在语音识别系统中,保持token序列的顺序至关重要。np.unique的错误使用会破坏原始语音特征的时间顺序信息,导致语义完全改变。
解决方案
正确的修复方案应该:
- 使用NumPy风格的argmax调用
- 实现与torch.unique_consecutive等效的函数
一个可能的实现方式是:
yseq = np.argmax(x, axis=-1)
# 实现unique_consecutive功能
yseq = yseq[np.concatenate(([True], yseq[1:] != yseq[:-1]))]
总结
这个案例展示了在深度学习框架中,不同计算库(如PyTorch和NumPy)API差异可能带来的问题。开发者在进行框架迁移或实现时,必须特别注意:
- 不同库之间API的细微差别
- 看似相似的函数可能有完全不同的语义
- 语音识别系统中序列顺序的重要性
FunASR团队已经快速响应并修复了这个问题,确保了语音转写功能的准确性和稳定性。这个案例也为其他开发者提供了宝贵的经验:在跨框架开发时,必须仔细验证每个函数的实现细节。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









