RAFT项目v25.02.00版本发布:分布式计算框架的重大更新
RAFT是一个开源的GPU加速分布式计算框架,专注于为机器学习和数据分析提供高性能的基础算法库。作为RAPIDS生态系统的重要组成部分,RAFT为GPU加速的机器学习算法提供了底层支持,包括线性代数、最近邻搜索、聚类分析等核心功能。
本次发布的v25.02.00版本带来了多项重要更新和优化,包括性能改进、新功能添加以及一些破坏性变更。下面我们将详细分析这次更新的技术要点。
破坏性变更解析
本次更新包含了三个重要的破坏性变更,开发者需要特别注意:
-
开发容器更新:将pip开发容器升级到了UCX 1.18版本。UCX(Unified Communication X)是一个高性能网络通信框架,这次升级可能会影响分布式通信性能和行为。
-
日志系统重构:项目全面转向使用rapids-logger作为日志系统。这一变更统一了RAPIDS生态系统的日志接口,但需要开发者调整现有的日志相关代码。
-
RMM日志适配:为了配合RMM(RAPIDS Memory Manager)的日志系统变更,RAFT也相应调整了日志处理逻辑。这一变更是为了保持与RAPIDS生态其他组件的一致性。
核心功能增强
本次更新在多个核心功能上有所增强:
-
RMAT矩形生成器优化:修复了RMAT矩形生成器的位顺序问题,确保其输出符合预期。RMAT是一种生成幂律图的随机图模型,广泛用于图算法测试。
-
Lanczos求解器改进:修复了整数溢出问题。Lanczos算法是求解大型稀疏矩阵特征值问题的重要方法,这一修复提升了算法的数值稳定性。
-
位集数据类型支持:新增了对不同数据类型的位集支持,增强了算法的灵活性。位集是表示集合的高效数据结构,广泛应用于图算法和集合运算。
-
位集到CSR格式转换:新增了
bitset_to_csr功能,实现了位集到压缩稀疏行(CSR)格式的转换。CSR是稀疏矩阵存储的常用格式,这一功能为稀疏矩阵处理提供了更多便利。
性能优化
本次发布包含了多项性能优化措施:
-
位图到CSR转换优化:专门针对
bitmap_to_csr操作进行了性能优化,提升了转换效率。这对于处理大规模稀疏数据尤为重要。 -
CUDA 12.8支持:新增了对CUDA 12.8的支持,使项目能够利用最新CUDA版本的性能改进和新特性。
-
资源管理改进:引入了
raft::device_resources_snmg类型,改进了多GPU环境下的资源管理。这一改进特别针对大规模分布式计算场景。
构建与部署改进
在构建系统和部署方面也有多项改进:
-
CUDA版本兼容性:移除了cuda-python的上限限制,现在支持12.6.2和11.8.5版本,提高了环境配置的灵活性。
-
动态CUDA wheel:在CUDA 11环境下使用动态CUDA wheel,减少了二进制包的大小。
-
依赖管理简化:清理了未使用的依赖项(joblib和numba),简化了项目的依赖关系,使部署更加轻量。
-
libraft wheel支持:引入了libraft的wheel包,简化了Python环境的安装过程。
文档与测试改进
-
文档修复:修复了文档构建问题和示例代码错误,提升了文档质量。
-
测试结构调整:将测试目录从"test"重命名为"tests",遵循更常见的Python项目结构规范。
-
CI流程优化:改进了持续集成流程,包括添加了对夜间构建成功率的检查,以及要求对草稿PR运行CI的审批流程。
总结
RAFT v25.02.00版本是一个重要的里程碑更新,在性能、功能和稳定性方面都有显著提升。特别是对最新CUDA版本的支持、日志系统的统一以及多项算法优化,使得RAFT在分布式GPU计算领域继续保持领先地位。开发者升级时需要注意破坏性变更的影响,特别是日志系统的调整和资源管理接口的变化。
这次更新也体现了RAFT项目对代码质量和开发体验的持续关注,通过简化依赖、优化构建流程和改进文档,降低了用户的使用门槛。随着RAPIDS生态系统的不断发展,RAFT作为其基础组件的重要性也将进一步提升。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00