Django Nose 项目教程
2024-09-19 20:47:08作者:廉皓灿Ida
1. 项目目录结构及介绍
Django Nose 项目的目录结构如下:
django-nose/
├── AUTHORS.rst
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.rst
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.rst
├── changelog.rst
├── contribute.json
├── django_nose/
│ ├── __init__.py
│ ├── ...
├── docs/
│ ├── ...
├── manage.py
├── requirements-rtd.txt
├── requirements.txt
├── runtests.sh
├── setup.cfg
├── setup.py
├── testapp/
│ ├── __init__.py
│ ├── ...
├── unittests/
│ ├── __init__.py
│ ├── ...
└── tox.ini
目录结构介绍
- AUTHORS.rst: 项目贡献者列表。
- CODE_OF_CONDUCT.md: 项目的行为准则。
- CONTRIBUTING.rst: 贡献指南。
- LICENSE: 项目许可证文件。
- MANIFEST.in: 用于指定在打包时需要包含的文件。
- Makefile: 包含一些常用的命令,如测试、文档生成等。
- README.rst: 项目的主文档,包含项目介绍、安装指南等。
- changelog.rst: 项目变更日志。
- contribute.json: 贡献相关的配置文件。
- django_nose/: 项目的主要代码目录,包含 Django Nose 的核心实现。
- docs/: 项目的文档目录,包含详细的文档和教程。
- manage.py: Django 项目的管理脚本。
- requirements-rtd.txt: 用于生成文档的依赖文件。
- requirements.txt: 项目的依赖文件。
- runtests.sh: 用于运行测试的脚本。
- setup.cfg: 项目的配置文件,包含一些打包和测试的配置。
- setup.py: 项目的安装脚本。
- testapp/: 示例测试应用目录,包含一些示例测试代码。
- unittests/: 单元测试目录,包含项目的单元测试代码。
- tox.ini: 用于配置 tox 的文件,tox 是一个用于自动化测试的工具。
2. 项目启动文件介绍
manage.py
manage.py 是 Django 项目的管理脚本,用于执行各种管理任务,如运行开发服务器、创建数据库迁移、运行测试等。
python manage.py runserver # 启动开发服务器
python manage.py test # 运行测试
runtests.sh
runtests.sh 是一个用于运行测试的脚本,通常用于在 CI/CD 环境中自动化测试。
./runtests.sh
3. 项目的配置文件介绍
setup.cfg
setup.cfg 是项目的配置文件,包含了一些打包和测试的配置。例如:
[nosetests]
verbosity=2
with-coverage=1
cover-package=django_nose
setup.py
setup.py 是项目的安装脚本,用于定义项目的元数据和依赖。
from setuptools import setup, find_packages
setup(
name='django-nose',
version='1.4.7',
packages=find_packages(),
install_requires=[
'nose>=1.2.1',
'Django>=1.8',
],
# 其他元数据
)
tox.ini
tox.ini 是用于配置 tox 的文件,tox 是一个用于自动化测试的工具,可以同时在多个 Python 版本和环境中运行测试。
[tox]
envlist = py36,py37,py38
[testenv]
deps =
nose
django
commands =
python runtests.sh
通过这些配置文件,可以方便地管理和运行 Django Nose 项目的测试和打包任务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.17 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255