Ethers.js 中 getBlock 方法获取交易数据的深度解析
前言
在区块链开发中,获取区块及其包含的交易信息是最基础也是最重要的操作之一。ethers.js 作为流行的区块链 JavaScript 库,提供了便捷的 getBlock 方法来满足这一需求。然而,近期有开发者反馈在使用特定 RPC 提供商时遇到了无法获取交易数据的问题,本文将深入分析这一现象背后的原因及解决方案。
getBlock 方法的基本用法
ethers.js 的 getBlock 方法用于获取指定区块的详细信息,其基本语法如下:
const block = await provider.getBlock(blockNumber, includeTransactions);
其中第二个参数 includeTransactions
是一个布尔值,决定是否在返回的区块对象中包含交易数据。当设置为 true 时,预期会返回完整的交易对象数组。
问题现象
开发者在使用 getblock.io 作为 RPC 提供商时发现,即使将 includeTransactions 参数设为 true,返回的区块对象中也没有包含预期的 transactions 字段。然而,直接通过 curl 请求相同的 RPC 端点却能正常获取交易数据。
技术分析
1. 底层实现机制
ethers.js 在处理 getBlock 请求时,会根据 includeTransactions 参数决定是否在 RPC 调用中包含交易详情。当设为 true 时,库会调用 eth_getBlockByNumber 或 eth_getBlockByHash 方法,并传入 true 作为第二个参数。
2. 数据存储方式
在 ethers.js v6 中,区块的交易数据实际上存储在内部属性 #transactions
中,并通过 getter 方法 prefetchedTransactions
暴露给开发者。这种设计是为了保持 API 的灵活性,同时优化内部数据结构。
3. 版本差异
在 ethers.js v6.13.2 版本中,存在一个已知问题:当 RPC 提供商返回的交易数据格式与预期不符时,prefetchedTransactions
可能无法正确解析。这一问题在 v6.13.4 版本中得到了修复。
解决方案
1. 升级库版本
最简单的解决方案是将 ethers.js 升级到最新版本(至少 v6.13.4):
npm install ethers@latest
2. 正确访问交易数据
在代码中,应使用 prefetchedTransactions
属性而非直接访问 transactions 字段:
const block = await provider.getBlock(blockNumber, true);
console.log("区块交易:", block.prefetchedTransactions);
3. 备用方案
如果因某些原因无法升级,可以考虑以下替代方案:
// 直接调用底层RPC方法
const blockWithTxs = await provider.send("eth_getBlockByNumber", [
ethers.toQuantity(blockNumber),
true
]);
console.log("原始交易数据:", blockWithTxs.transactions);
最佳实践建议
- 版本控制:始终使用最新稳定版的 ethers.js,以避免已知问题
- 错误处理:在使用
prefetchedTransactions
时添加适当的错误处理 - 数据验证:检查返回的交易数据是否符合预期格式
- 性能考量:获取包含交易的区块会显著增加响应数据量,应根据实际需求决定是否获取
总结
ethers.js 的 getBlock 方法是与区块链交互的重要工具。理解其内部实现机制和版本差异对于解决实际开发中的问题至关重要。通过本文的分析,开发者应该能够正确处理区块交易数据的获取问题,并在不同场景下选择最适合的解决方案。
记住,区块链开发中遇到问题时,检查库版本和查阅最新文档往往是解决问题的第一步。ethers.js 作为一个活跃维护的项目,持续更新以解决各种边界情况和兼容性问题,保持代码库的更新是保证稳定开发体验的关键。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









