Ethers.js 中 getBlock 方法获取交易数据的深度解析
前言
在区块链开发中,获取区块及其包含的交易信息是最基础也是最重要的操作之一。ethers.js 作为流行的区块链 JavaScript 库,提供了便捷的 getBlock 方法来满足这一需求。然而,近期有开发者反馈在使用特定 RPC 提供商时遇到了无法获取交易数据的问题,本文将深入分析这一现象背后的原因及解决方案。
getBlock 方法的基本用法
ethers.js 的 getBlock 方法用于获取指定区块的详细信息,其基本语法如下:
const block = await provider.getBlock(blockNumber, includeTransactions);
其中第二个参数 includeTransactions 是一个布尔值,决定是否在返回的区块对象中包含交易数据。当设置为 true 时,预期会返回完整的交易对象数组。
问题现象
开发者在使用 getblock.io 作为 RPC 提供商时发现,即使将 includeTransactions 参数设为 true,返回的区块对象中也没有包含预期的 transactions 字段。然而,直接通过 curl 请求相同的 RPC 端点却能正常获取交易数据。
技术分析
1. 底层实现机制
ethers.js 在处理 getBlock 请求时,会根据 includeTransactions 参数决定是否在 RPC 调用中包含交易详情。当设为 true 时,库会调用 eth_getBlockByNumber 或 eth_getBlockByHash 方法,并传入 true 作为第二个参数。
2. 数据存储方式
在 ethers.js v6 中,区块的交易数据实际上存储在内部属性 #transactions 中,并通过 getter 方法 prefetchedTransactions 暴露给开发者。这种设计是为了保持 API 的灵活性,同时优化内部数据结构。
3. 版本差异
在 ethers.js v6.13.2 版本中,存在一个已知问题:当 RPC 提供商返回的交易数据格式与预期不符时,prefetchedTransactions 可能无法正确解析。这一问题在 v6.13.4 版本中得到了修复。
解决方案
1. 升级库版本
最简单的解决方案是将 ethers.js 升级到最新版本(至少 v6.13.4):
npm install ethers@latest
2. 正确访问交易数据
在代码中,应使用 prefetchedTransactions 属性而非直接访问 transactions 字段:
const block = await provider.getBlock(blockNumber, true);
console.log("区块交易:", block.prefetchedTransactions);
3. 备用方案
如果因某些原因无法升级,可以考虑以下替代方案:
// 直接调用底层RPC方法
const blockWithTxs = await provider.send("eth_getBlockByNumber", [
ethers.toQuantity(blockNumber),
true
]);
console.log("原始交易数据:", blockWithTxs.transactions);
最佳实践建议
- 版本控制:始终使用最新稳定版的 ethers.js,以避免已知问题
- 错误处理:在使用
prefetchedTransactions时添加适当的错误处理 - 数据验证:检查返回的交易数据是否符合预期格式
- 性能考量:获取包含交易的区块会显著增加响应数据量,应根据实际需求决定是否获取
总结
ethers.js 的 getBlock 方法是与区块链交互的重要工具。理解其内部实现机制和版本差异对于解决实际开发中的问题至关重要。通过本文的分析,开发者应该能够正确处理区块交易数据的获取问题,并在不同场景下选择最适合的解决方案。
记住,区块链开发中遇到问题时,检查库版本和查阅最新文档往往是解决问题的第一步。ethers.js 作为一个活跃维护的项目,持续更新以解决各种边界情况和兼容性问题,保持代码库的更新是保证稳定开发体验的关键。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00