Tencent/MimicMotion项目72帧模型训练技术解析
背景概述
Tencent/MimicMotion是一个专注于视频生成与运动模拟的开源项目,其中72帧长序列模型的训练是该项目的核心技术之一。本文将深入探讨在该项目中实现长序列视频模型训练的关键技术要点。
内存优化技术
在训练长序列视频模型时,GPU内存消耗是最主要的挑战之一。根据项目实践经验,当分辨率达到1024×576时,仅16帧的视频就会占用高达66GB的GPU内存。
核心优化策略
-
卷积层检查点技术:项目中对所有卷积部分都实施了检查点(checkpointing)技术,这是降低内存占用的基础手段。
-
时空Transformer检查点:进一步对TransformerTemporalModel和TransformerSpatioTemporalModel模块实施检查点技术,这被证实能显著减少内存使用。
-
分层检查点策略:针对不同网络模块采用差异化的检查点策略,在计算效率和内存占用之间取得平衡。
训练数据考量
项目实践表明,高质量的训练数据获取是另一个关键挑战:
-
数据来源:主要依赖于从各视频平台自行收集的高质量舞蹈视频。
-
数据特点:目前公开的高质量舞蹈视频数据集较为稀缺,需要投入大量精力进行数据采集和清洗。
-
数据预处理:长序列训练要求视频具有较高的时间连贯性和动作完整性。
技术实现建议
对于希望复现或改进该项目的开发者,建议考虑以下技术路线:
-
渐进式训练:可先在小分辨率、短序列上训练基础模型,再逐步提升分辨率和序列长度。
-
混合精度训练:结合FP16/FP32混合精度训练可以进一步优化内存使用。
-
分布式训练:对于超长序列(如72帧)训练,可能需要考虑多GPU分布式训练策略。
总结
Tencent/MimicMotion项目通过创新的内存优化技术和严格的数据质量控制,成功实现了72帧长序列视频模型的训练。这些经验为视频生成领域的长序列建模提供了宝贵的技术参考,特别是在舞蹈动作生成等需要长时程连贯性的应用场景中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00