CVAT部署YOLOv11n-Pose模型问题分析与解决方案
2025-05-16 05:19:02作者:郦嵘贵Just
问题背景
在使用CVAT进行模型部署时,用户尝试将自定义的YOLOv11n-Pose姿态估计模型通过Nuclio部署到CVAT平台上,但遇到了"Could not get models from the server"的错误提示。该问题发生在部署过程中,尽管模型文件已正确放置在指定目录,且初始化日志显示正常。
问题分析
通过分析用户提供的配置文件和代码,发现主要问题出在模型规格定义上。在CVAT中部署骨架检测(skeleton)模型时,需要在YAML配置文件中包含完整的骨架定义,特别是缺少了关键的"svg"字段。
解决方案
1. 修正YAML配置文件
正确的骨架模型定义应当包含svg字段,用于描述骨架连接关系。以下是修正后的YAML配置示例:
metadata:
name: pth-yolo11npose-sport
namespace: cvat
annotations:
name: YOLO-Pose
type: detector
framework: pytorch
spec: |
[
{
"name": "person",
"type": "skeleton",
"svg": "<svg><line x1=\"0\" y1=\"0\" x2=\"1\" y2=\"1\" stroke=\"black\"/></svg>",
"sublabels": [
{"id": 0, "name": "LHead", "type": "points"},
{"id": 1, "name": "Nose", "type": "points"},
// 其余子标签定义...
]
}
]
2. 模型部署注意事项
在CVAT中部署YOLO系列模型时,需要注意以下几点:
- 模型格式选择:支持PyTorch(.pt)和ONNX(.onnx)格式
- 依赖安装:确保安装了正确版本的PyTorch和Ultralytics库
- 文件权限:模型文件需要有正确的访问权限
- 内存限制:姿态估计模型通常需要较大内存,确保Nuclio配置足够资源
3. 完整部署流程
- 准备模型文件(.pt或.onnx)
- 编写正确的function.yaml配置文件
- 编写处理脚本main.py
- 通过Nuclio部署到CVAT
- 在CVAT界面验证模型可用性
技术要点
- 骨架模型定义:CVAT要求骨架模型必须包含svg字段定义骨架连接关系
- 模型初始化:在init_context中正确加载模型和配置
- 结果处理:需要将模型输出转换为CVAT可识别的JSON格式
- 性能优化:对于实时应用,需要考虑模型推理速度优化
常见问题排查
- 模型加载失败:检查模型路径是否正确,文件是否存在
- 依赖缺失:查看容器日志确认所有Python包已正确安装
- 内存不足:增加Nuclio函数的内存限制
- 版本冲突:确保PyTorch与CUDA版本兼容
通过以上修正和注意事项,应该能够成功在CVAT上部署YOLOv11n-Pose模型,实现姿态估计功能。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133