CVAT部署YOLOv11n-Pose模型问题分析与解决方案
2025-05-16 06:29:18作者:郦嵘贵Just
问题背景
在使用CVAT进行模型部署时,用户尝试将自定义的YOLOv11n-Pose姿态估计模型通过Nuclio部署到CVAT平台上,但遇到了"Could not get models from the server"的错误提示。该问题发生在部署过程中,尽管模型文件已正确放置在指定目录,且初始化日志显示正常。
问题分析
通过分析用户提供的配置文件和代码,发现主要问题出在模型规格定义上。在CVAT中部署骨架检测(skeleton)模型时,需要在YAML配置文件中包含完整的骨架定义,特别是缺少了关键的"svg"字段。
解决方案
1. 修正YAML配置文件
正确的骨架模型定义应当包含svg字段,用于描述骨架连接关系。以下是修正后的YAML配置示例:
metadata:
name: pth-yolo11npose-sport
namespace: cvat
annotations:
name: YOLO-Pose
type: detector
framework: pytorch
spec: |
[
{
"name": "person",
"type": "skeleton",
"svg": "<svg><line x1=\"0\" y1=\"0\" x2=\"1\" y2=\"1\" stroke=\"black\"/></svg>",
"sublabels": [
{"id": 0, "name": "LHead", "type": "points"},
{"id": 1, "name": "Nose", "type": "points"},
// 其余子标签定义...
]
}
]
2. 模型部署注意事项
在CVAT中部署YOLO系列模型时,需要注意以下几点:
- 模型格式选择:支持PyTorch(.pt)和ONNX(.onnx)格式
- 依赖安装:确保安装了正确版本的PyTorch和Ultralytics库
- 文件权限:模型文件需要有正确的访问权限
- 内存限制:姿态估计模型通常需要较大内存,确保Nuclio配置足够资源
3. 完整部署流程
- 准备模型文件(.pt或.onnx)
- 编写正确的function.yaml配置文件
- 编写处理脚本main.py
- 通过Nuclio部署到CVAT
- 在CVAT界面验证模型可用性
技术要点
- 骨架模型定义:CVAT要求骨架模型必须包含svg字段定义骨架连接关系
- 模型初始化:在init_context中正确加载模型和配置
- 结果处理:需要将模型输出转换为CVAT可识别的JSON格式
- 性能优化:对于实时应用,需要考虑模型推理速度优化
常见问题排查
- 模型加载失败:检查模型路径是否正确,文件是否存在
- 依赖缺失:查看容器日志确认所有Python包已正确安装
- 内存不足:增加Nuclio函数的内存限制
- 版本冲突:确保PyTorch与CUDA版本兼容
通过以上修正和注意事项,应该能够成功在CVAT上部署YOLOv11n-Pose模型,实现姿态估计功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355