CVAT部署YOLOv11n-Pose模型问题分析与解决方案
2025-05-16 14:33:33作者:郦嵘贵Just
问题背景
在使用CVAT进行模型部署时,用户尝试将自定义的YOLOv11n-Pose姿态估计模型通过Nuclio部署到CVAT平台上,但遇到了"Could not get models from the server"的错误提示。该问题发生在部署过程中,尽管模型文件已正确放置在指定目录,且初始化日志显示正常。
问题分析
通过分析用户提供的配置文件和代码,发现主要问题出在模型规格定义上。在CVAT中部署骨架检测(skeleton)模型时,需要在YAML配置文件中包含完整的骨架定义,特别是缺少了关键的"svg"字段。
解决方案
1. 修正YAML配置文件
正确的骨架模型定义应当包含svg字段,用于描述骨架连接关系。以下是修正后的YAML配置示例:
metadata:
name: pth-yolo11npose-sport
namespace: cvat
annotations:
name: YOLO-Pose
type: detector
framework: pytorch
spec: |
[
{
"name": "person",
"type": "skeleton",
"svg": "<svg><line x1=\"0\" y1=\"0\" x2=\"1\" y2=\"1\" stroke=\"black\"/></svg>",
"sublabels": [
{"id": 0, "name": "LHead", "type": "points"},
{"id": 1, "name": "Nose", "type": "points"},
// 其余子标签定义...
]
}
]
2. 模型部署注意事项
在CVAT中部署YOLO系列模型时,需要注意以下几点:
- 模型格式选择:支持PyTorch(.pt)和ONNX(.onnx)格式
- 依赖安装:确保安装了正确版本的PyTorch和Ultralytics库
- 文件权限:模型文件需要有正确的访问权限
- 内存限制:姿态估计模型通常需要较大内存,确保Nuclio配置足够资源
3. 完整部署流程
- 准备模型文件(.pt或.onnx)
- 编写正确的function.yaml配置文件
- 编写处理脚本main.py
- 通过Nuclio部署到CVAT
- 在CVAT界面验证模型可用性
技术要点
- 骨架模型定义:CVAT要求骨架模型必须包含svg字段定义骨架连接关系
- 模型初始化:在init_context中正确加载模型和配置
- 结果处理:需要将模型输出转换为CVAT可识别的JSON格式
- 性能优化:对于实时应用,需要考虑模型推理速度优化
常见问题排查
- 模型加载失败:检查模型路径是否正确,文件是否存在
- 依赖缺失:查看容器日志确认所有Python包已正确安装
- 内存不足:增加Nuclio函数的内存限制
- 版本冲突:确保PyTorch与CUDA版本兼容
通过以上修正和注意事项,应该能够成功在CVAT上部署YOLOv11n-Pose模型,实现姿态估计功能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217