ThreatMapper中Azure容器镜像标签显示问题分析
问题背景
在ThreatMapper安全扫描平台中,用户发现当添加多个Azure容器注册表账户时,如果这些账户中存在使用相同摘要(digest)的镜像,系统无法正确显示这些镜像的所有标签(tags)。这导致用户在查看镜像详情时,只能看到部分标签信息,而实际上镜像可能拥有多个不同的标签。
技术分析
该问题主要涉及ThreatMapper平台对容器镜像元数据的处理和展示逻辑。在容器注册表(如Azure Container Registry)中,一个镜像摘要可以对应多个标签,这是容器镜像管理中的常见情况。
问题根源
-
API过滤机制:当前系统在获取镜像标签列表时,使用了
image_filter参数进行查询,这可能导致部分标签信息被过滤掉。 -
数据结构处理:系统在处理多个注册表账户中相同摘要的镜像时,可能没有正确合并这些镜像的标签信息。
-
前端展示逻辑:标签列表视图没有正确传递和处理镜像的所有标签数据。
解决方案
经过分析,开发团队提出了以下修复方案:
-
引入新的过滤参数:在
registryaccount/imagesAPI中添加image_stub_filter参数,其请求体结构与image_filter相同,但专门用于获取完整的镜像标签信息。 -
前端请求调整:在标签列表视图中,将原本使用的
image_filter替换为image_stub_filter,确保能获取到完整的标签数据。 -
数据合并处理:后端服务需要改进对多个注册表账户中相同摘要镜像的处理逻辑,确保所有标签信息都能被正确收集和返回。
实现示例
以下是使用新过滤参数的API请求示例:
curl 'https://<console>/deepfence/registryaccount/images' \
-H 'authorization: Bearer <token>' \
--data-raw '{"image_stub_filter":{"compare_filter":[],"contains_filter":{"filter_in":{"docker_image_name":["jatin"]}},"match_filter":{"filter_in":{}},"not_contains_filter":{"filter_in":{}},"order_filter":{"order_fields":[]}},"registry_id":"azure_container_registry-deepfence-4","window":{"offset":0,"size":10}}'
总结
该问题的修复确保了ThreatMapper平台能够正确显示Azure容器注册表中镜像的所有标签信息,特别是当多个注册表账户中存在相同摘要的镜像时。这对于安全扫描和镜像管理至关重要,因为不同的标签可能代表不同的版本或环境配置,安全团队需要全面了解这些信息才能做出准确的安全评估。
通过引入专门的过滤参数和改进数据处理逻辑,ThreatMapper增强了对容器镜像元数据的处理能力,为用户提供了更完整、准确的镜像信息展示。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00