ThreatMapper中Azure容器镜像标签显示问题分析
问题背景
在ThreatMapper安全扫描平台中,用户发现当添加多个Azure容器注册表账户时,如果这些账户中存在使用相同摘要(digest)的镜像,系统无法正确显示这些镜像的所有标签(tags)。这导致用户在查看镜像详情时,只能看到部分标签信息,而实际上镜像可能拥有多个不同的标签。
技术分析
该问题主要涉及ThreatMapper平台对容器镜像元数据的处理和展示逻辑。在容器注册表(如Azure Container Registry)中,一个镜像摘要可以对应多个标签,这是容器镜像管理中的常见情况。
问题根源
-
API过滤机制:当前系统在获取镜像标签列表时,使用了
image_filter参数进行查询,这可能导致部分标签信息被过滤掉。 -
数据结构处理:系统在处理多个注册表账户中相同摘要的镜像时,可能没有正确合并这些镜像的标签信息。
-
前端展示逻辑:标签列表视图没有正确传递和处理镜像的所有标签数据。
解决方案
经过分析,开发团队提出了以下修复方案:
-
引入新的过滤参数:在
registryaccount/imagesAPI中添加image_stub_filter参数,其请求体结构与image_filter相同,但专门用于获取完整的镜像标签信息。 -
前端请求调整:在标签列表视图中,将原本使用的
image_filter替换为image_stub_filter,确保能获取到完整的标签数据。 -
数据合并处理:后端服务需要改进对多个注册表账户中相同摘要镜像的处理逻辑,确保所有标签信息都能被正确收集和返回。
实现示例
以下是使用新过滤参数的API请求示例:
curl 'https://<console>/deepfence/registryaccount/images' \
-H 'authorization: Bearer <token>' \
--data-raw '{"image_stub_filter":{"compare_filter":[],"contains_filter":{"filter_in":{"docker_image_name":["jatin"]}},"match_filter":{"filter_in":{}},"not_contains_filter":{"filter_in":{}},"order_filter":{"order_fields":[]}},"registry_id":"azure_container_registry-deepfence-4","window":{"offset":0,"size":10}}'
总结
该问题的修复确保了ThreatMapper平台能够正确显示Azure容器注册表中镜像的所有标签信息,特别是当多个注册表账户中存在相同摘要的镜像时。这对于安全扫描和镜像管理至关重要,因为不同的标签可能代表不同的版本或环境配置,安全团队需要全面了解这些信息才能做出准确的安全评估。
通过引入专门的过滤参数和改进数据处理逻辑,ThreatMapper增强了对容器镜像元数据的处理能力,为用户提供了更完整、准确的镜像信息展示。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00