Kamal 部署 Solid Queue 独立工作节点的实践指南
背景介绍
在现代 Rails 应用开发中,后台任务处理是一个常见需求。Solid Queue 作为 Rails 7.1 引入的默认后台任务解决方案,相比传统的 Active Job 适配器提供了更高效的性能。本文将详细介绍如何通过 Kamal 部署工具来独立部署 Solid Queue 工作节点,而不需要同时运行 Web 应用。
核心挑战
许多开发者在使用 Kamal 部署 Solid Queue 时遇到一个典型问题:Kamal 默认会对部署的容器进行健康检查,这通常需要一个 Web 服务来响应 HTTP 请求。但对于纯后台工作节点来说,运行一个 Web 服务既浪费资源又增加了复杂性。
解决方案
1. 创建专用部署配置
首先,我们需要为工作节点创建独立的部署配置文件 deploy-worker.yml。关键配置如下:
service: app-worker
image: your-registry/app_worker
servers:
web:
hosts:
- your.server.ip
proxy: false # 关键配置,禁用代理和健康检查
builder:
dockerfile: Dockerfile.worker
2. 定制 Dockerfile
为工作节点创建专用的 Dockerfile (Dockerfile.worker):
FROM ruby:3.3.4-slim AS base
WORKDIR /rails
RUN apt-get update -qq && \
apt-get install --no-install-recommends -y build-essential libpq-dev
ENV RAILS_ENV="production" \
BUNDLE_DEPLOYMENT="1"
COPY Gemfile Gemfile.lock ./
RUN bundle install
COPY . .
USER 1000:1000
CMD ["bin/jobs"] # 直接运行工作进程
3. 优化启动命令
在 bin/jobs 脚本中,我们可以直接启动 Solid Queue 的各个组件:
#!/usr/bin/env ruby
require "solid_queue"
SolidQueue::Manager.start(
dispatchers: { default: { polling_interval: 1 } },
workers: { default: { processes: 2, queues: "*" } }
)
技术原理
Kamal 的健康检查机制默认会验证容器是否能够响应 HTTP 请求。通过将 proxy: false 设置在 web 配置下(而非根级别),我们告诉 Kamal 这个角色不需要进行健康检查。这允许纯后台工作节点顺利部署而不需要运行 Web 服务。
常见问题解决
如果遇到 "target failed to become healthy" 错误,请检查:
- 确保
proxy: false正确设置在web配置段下 - 确认没有其他配置意外启用了健康检查
- 检查工作进程是否能在合理时间内启动完成
性能优化建议
- 资源隔离:将工作节点与 Web 节点部署在不同主机上,避免资源竞争
- 垂直扩展:根据任务负载调整工作进程数量
- 日志管理:配置合理的日志轮转策略,避免磁盘空间耗尽
总结
通过合理配置 Kamal,我们可以实现 Solid Queue 工作节点的独立部署,既简化了架构又提高了资源利用率。这种部署方式特别适合任务密集型应用,能够在不影响 Web 服务的情况下灵活扩展后台处理能力。
对于需要同时部署 Web 和 Worker 的场景,建议采用分离的部署配置和镜像,以获得最佳的运维灵活性和资源利用率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0102
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00