Kamal 部署 Solid Queue 独立工作节点的实践指南
背景介绍
在现代 Rails 应用开发中,后台任务处理是一个常见需求。Solid Queue 作为 Rails 7.1 引入的默认后台任务解决方案,相比传统的 Active Job 适配器提供了更高效的性能。本文将详细介绍如何通过 Kamal 部署工具来独立部署 Solid Queue 工作节点,而不需要同时运行 Web 应用。
核心挑战
许多开发者在使用 Kamal 部署 Solid Queue 时遇到一个典型问题:Kamal 默认会对部署的容器进行健康检查,这通常需要一个 Web 服务来响应 HTTP 请求。但对于纯后台工作节点来说,运行一个 Web 服务既浪费资源又增加了复杂性。
解决方案
1. 创建专用部署配置
首先,我们需要为工作节点创建独立的部署配置文件 deploy-worker.yml。关键配置如下:
service: app-worker
image: your-registry/app_worker
servers:
web:
hosts:
- your.server.ip
proxy: false # 关键配置,禁用代理和健康检查
builder:
dockerfile: Dockerfile.worker
2. 定制 Dockerfile
为工作节点创建专用的 Dockerfile (Dockerfile.worker):
FROM ruby:3.3.4-slim AS base
WORKDIR /rails
RUN apt-get update -qq && \
apt-get install --no-install-recommends -y build-essential libpq-dev
ENV RAILS_ENV="production" \
BUNDLE_DEPLOYMENT="1"
COPY Gemfile Gemfile.lock ./
RUN bundle install
COPY . .
USER 1000:1000
CMD ["bin/jobs"] # 直接运行工作进程
3. 优化启动命令
在 bin/jobs 脚本中,我们可以直接启动 Solid Queue 的各个组件:
#!/usr/bin/env ruby
require "solid_queue"
SolidQueue::Manager.start(
dispatchers: { default: { polling_interval: 1 } },
workers: { default: { processes: 2, queues: "*" } }
)
技术原理
Kamal 的健康检查机制默认会验证容器是否能够响应 HTTP 请求。通过将 proxy: false 设置在 web 配置下(而非根级别),我们告诉 Kamal 这个角色不需要进行健康检查。这允许纯后台工作节点顺利部署而不需要运行 Web 服务。
常见问题解决
如果遇到 "target failed to become healthy" 错误,请检查:
- 确保
proxy: false正确设置在web配置段下 - 确认没有其他配置意外启用了健康检查
- 检查工作进程是否能在合理时间内启动完成
性能优化建议
- 资源隔离:将工作节点与 Web 节点部署在不同主机上,避免资源竞争
- 垂直扩展:根据任务负载调整工作进程数量
- 日志管理:配置合理的日志轮转策略,避免磁盘空间耗尽
总结
通过合理配置 Kamal,我们可以实现 Solid Queue 工作节点的独立部署,既简化了架构又提高了资源利用率。这种部署方式特别适合任务密集型应用,能够在不影响 Web 服务的情况下灵活扩展后台处理能力。
对于需要同时部署 Web 和 Worker 的场景,建议采用分离的部署配置和镜像,以获得最佳的运维灵活性和资源利用率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00