在Jetson Nano上使用YOLOv5实现Pi Camera实时目标检测的技术方案
2025-04-30 07:08:24作者:裘晴惠Vivianne
背景介绍
在边缘计算设备如Jetson Nano上部署YOLOv5模型进行实时目标检测是一个常见的应用场景。本文将详细介绍如何在不依赖互联网连接的情况下,使用Pi Camera作为输入源,在Jetson Nano上实现基于YOLOv5的实时目标检测系统。
系统架构
该方案包含以下几个关键组件:
- Jetson Nano作为计算平台
- Pi Camera作为图像采集设备
- 本地存储的YOLOv5模型文件
- GStreamer视频流处理管道
技术实现要点
1. 模型加载方式
传统使用torch.hub.load方法需要互联网连接,这在无网络环境中不可行。替代方案是直接加载本地存储的模型文件:
import torch
from models.common import DetectMultiBackend
# 加载本地模型
model = DetectMultiBackend('best.pt', device='cuda')
2. Pi Camera配置
在Jetson Nano上使用Pi Camera需要配置GStreamer管道:
pipeline = "nvarguscamerasrc ! video/x-raw(memory:NVMM), width=1280, height=720, format=NV12, framerate=30/1 ! nvvidconv flip-method=0 ! video/x-raw, width=1280, height=720, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink"
3. 实时检测流程
完整的检测流程包括:
- 初始化视频捕获
- 逐帧读取图像
- 执行模型推理
- 渲染检测结果
- 显示输出
import cv2
# 初始化视频捕获
cap = cv2.VideoCapture(pipeline, cv2.CAP_GSTREAMER)
while True:
ret, frame = cap.read()
if not ret:
break
# 执行推理
results = model(frame)
# 渲染结果
rendered_frame = results.render()[0]
# 显示输出
cv2.imshow('Detection', rendered_frame)
if cv2.waitKey(1) == ord('q'):
break
常见问题解决
1. 模型加载错误
确保模型文件路径正确,并且模型格式为.pt文件。如果遇到Tensor对象没有render属性的错误,可能是因为模型输出格式不正确,需要检查模型输出结构。
2. GStreamer管道错误
常见的管道配置问题包括:
- 分辨率不匹配
- 格式转换错误
- 缺少必要的GStreamer插件
建议逐步测试管道配置,确保每个环节都能正常工作。
3. 性能优化
在Jetson Nano上可以采取以下优化措施:
- 使用TensorRT加速
- 降低输入分辨率
- 优化模型结构
- 使用半精度推理
总结
本文介绍了在Jetson Nano上使用YOLOv5和Pi Camera实现离线实时目标检测的完整方案。通过本地加载模型和正确配置视频输入管道,可以在不依赖互联网的情况下实现高效的实时检测系统。该方案适用于各种边缘计算场景,如智能监控、工业检测等应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
265
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118