LM 格式强制器(LM Format Enforcer):引导语言模型输出结构化数据
2026-01-17 09:27:56作者:郦嵘贵Just
1. 项目介绍
LM Format Enforcer 是一个库,旨在确保语言模型(LLM)的输出遵循指定的数据格式,如 JSON Schema 或正则表达式。该项目不仅仅提供建议性结构输出,而是能够“强制”LLM 输出符合预期的模式。它支持本地 LLM,目前兼容 LlamaCPP 和 HuggingfaceLLM 后端,并通过处理 LLM 的输出 logit 来工作,这使得它能够支持高级生成方法,如束搜索和批处理。
2. 项目快速启动
要开始使用 LM Format Enforcer,首先确保安装了必要的依赖项:
pip install lm-format-enforcer
然后,可以使用以下代码示例来演示如何限制 LLM 生成符合 JSON Schema 结构的文本:
from pydantic import BaseModel
from lmformatenforcer import JsonSchemaParser
from lmformatenforcer.integrations.transformers import *
class Album(BaseModel):
title: str
artist: str
songs: list
schema = JsonSchemaParser.parse_schema(Album)
# 假设 `my_language_model` 是你的 LLM
output = my_language_model.generate(prompt, max_length, num_return_sequences, **schema)
在上面的例子中,prompt 应该是一个提示,max_length 和 num_return_sequences 是模型生成参数,而 **schema 将 JSON Schema 对象作为额外的输入传递给模型。
3. 应用案例和最佳实践
示例1:结构化音乐专辑数据生成
假设你想让 LLM 生成一个包含歌曲列表的音乐专辑描述,你可以定义一个 JSON Schema 并使用 LM Format Enforcer 强制其遵循这个结构:
{
"$schema": "http://json-schema.org/draft-07/schema",
"title": "Album",
"type": "object",
"properties": {
"title": {"type": "string"},
"artist": {"type": "string"},
"songs": {
"type": "array",
"items": {
"type": "object",
"properties": {
"title": {"type": "string"},
"duration": {"type": "integer"}
}
}
}
},
"required": ["title", "artist", "songs"]
}
然后,利用这个 schema 创建一个提示并生成结构化的专辑描述。
最佳实践
- 在调用 LLM 之前,始终验证 JSON Schema 是否正确。
- 使用启发式策略避免因 LLM 输出引起的边缘情况。
- 考虑结合不同的提示工程技巧来提高生成文本的鲁棒性。
4. 典型生态项目
LM Format Enforcer 可以与以下项目集成:
- LlamaIndex: 提供了一个初始集成,简化了生成 Pydantic 对象的过程。
- vLLM Server: 包含 LM Format Enforcer 的推理服务器,允许无需编写自定义推断代码就能使用。
- Huggingface Transformers: 支持与 Huggingface Transformers 的无缝协作,方便处理各种 NLP 任务。
通过这些生态项目,开发者可以更轻松地将格式控制融入到现有的 NLP 工作流程中。
以上是 LM Format Enforcer 的简介及其基本用法。为了了解更多详细信息和高级功能,建议查阅项目官方文档和示例代码。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.65 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
298
347
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
116
21
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.3 K
722
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1