Bevy_xpbd 中获取碰撞点坐标的技术解析
2025-07-05 21:41:43作者:宗隆裙
在物理引擎开发中,准确获取碰撞点的坐标信息是一个常见但技术性较强的需求。本文将深入探讨如何在Bevy_xpbd物理引擎中获取碰撞点的坐标信息,包括绝对坐标和相对于实体位置的坐标。
碰撞检测的基本原理
Bevy_xpbd作为Bevy游戏引擎的物理扩展,采用了先进的碰撞检测算法。当两个实体发生碰撞时,引擎会生成详细的碰撞数据,包括接触点、法线方向和穿透深度等信息。这些数据对于游戏逻辑处理如伤害判定、音效触发等场景至关重要。
碰撞数据的结构特点
在Bevy_xpbd中,碰撞数据具有几个重要特性:
-
多接触点支持:一个碰撞可能产生多个接触面(manifold),每个接触面又可能包含多个接触点。例如,一个立方体平放在地面上会产生四个接触点。
-
双面接触点:每个接触点实际上包含两个位置信息 - 分别位于两个碰撞实体的表面。
-
局部空间存储:为提高计算效率,接触点数据最初存储在实体的局部坐标系中。
获取碰撞点的技术实现
要获取碰撞点的坐标信息,需要以下几个步骤:
1. 访问碰撞资源
首先需要从Collisions资源中获取特定实体对的碰撞数据:
let Some(contacts) = collisions.get(wall_entity, other_entity) else {
continue;
};
2. 确定主要接触点
由于可能存在多个接触点,通常需要找出穿透最深的那个:
let Some(mut deepest_contact) = contacts.find_deepest_contact().copied() else {
continue;
};
3. 统一实体顺序
确保碰撞数据中的实体顺序一致,便于后续处理:
if wall_entity != contacts.entity1 {
deepest_contact.flip();
}
4. 坐标转换
将局部坐标转换为世界坐标和相对坐标:
// 相对于实体位置的坐标
let point = transform.rotation * deepest_contact.point1;
// 绝对世界坐标
let global_point = transform.translation + point;
实际应用示例
以下是一个完整的系统实现示例,用于检测墙壁碰撞并记录碰撞点:
pub fn wall_collisions(
mut commands: Commands,
map: Query<(Entity, &Wall, &CollidingEntities, &Transform)>,
collisions: Res<Collisions>,
) {
for (&wall_entity, _map, colliding, transform) in map.iter() {
for &other_entity in colliding.iter() {
let Some(contacts) = collisions.get(wall_entity, other_entity) else {
continue;
};
let Some(mut deepest_contact) = contacts.find_deepest_contact().copied() else {
continue;
};
if wall_entity != contacts.entity1 {
deepest_contact.flip();
}
let point = transform.rotation * deepest_contact.point1;
let global_point = transform.translation + point;
commands.entity(wall_entity).insert(CollidedWithWall {
contact_x: global_point.x,
contact_y: global_point.y,
});
}
}
}
性能优化建议
-
选择性处理:只处理真正需要的碰撞数据,避免不必要的计算。
-
批量处理:当需要处理大量碰撞时,考虑使用更高效的数据结构。
-
缓存结果:对于不常变动的静态物体,可以考虑缓存碰撞点信息。
总结
掌握Bevy_xpbd中碰撞点坐标的获取方法,可以大大增强游戏的物理交互能力。通过理解碰撞数据的结构和坐标转换原理,开发者可以实现更精确的碰撞响应逻辑。本文介绍的方法不仅适用于墙壁碰撞检测,也可推广到其他各种物理交互场景中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
303
2.67 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
133
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
594
129
React Native鸿蒙化仓库
JavaScript
231
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
613
仓颉编译器源码及 cjdb 调试工具。
C++
123
605
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.55 K