Apache Fury 项目中 JDK 代理序列化问题的深度解析
2025-06-25 14:07:35作者:翟江哲Frasier
问题背景
在 Java 开发中,动态代理是一个常用的技术,它允许开发者在运行时创建实现特定接口的代理类。JDK 自带的动态代理机制通过 java.lang.reflect.Proxy 类实现,当这些代理类需要被序列化时,就会遇到一些特殊问题。Apache Fury 作为一个高性能的序列化框架,在处理 JDK 代理序列化时也遇到了挑战。
问题现象
在 Apache Fury 0.71 版本中,当尝试序列化一个实现了 Serializable 接口的 JDK 动态代理对象时,会出现 ClassCastException 异常。具体错误信息表明无法将代理类实例转换为 InvocationHandler 类型。
技术分析
JDK 代理序列化机制
JDK 动态代理的序列化有其特殊机制。当代理类实现 Serializable 接口时,它会使用 writeReplace 方法来控制序列化过程。标准的 JDK 序列化流程如下:
- 代理对象被序列化时,会调用其
writeReplace方法 - 该方法返回一个
ProxyReplacement对象,包含重建代理所需的信息 - 反序列化时,通过
readResolve方法重建代理实例
Apache Fury 的处理问题
Fury 在处理这种场景时出现了两个关键问题:
- 序列化器冲突:
JdkProxySerializer和ReplaceResolveSerializer在处理writeReplace方法时产生了冲突 - 类型转换错误:反序列化时错误地将代理类实例当作
InvocationHandler处理
根本原因
问题的核心在于代理类的 InvocationHandler 本身也实现了 writeReplace 方法。Fury 的序列化机制在处理这种嵌套的 writeReplace 场景时出现了逻辑错误,导致序列化流程被打乱。
解决方案
Apache Fury 团队通过以下方式解决了这个问题:
- 优先处理
writeReplace:在序列化代理对象时,首先检查并处理writeReplace方法 - 正确类型转换:确保在反序列化过程中正确处理代理类和其
InvocationHandler的关系 - 兼容性增强:使 Fury 的序列化行为与 JDK 原生序列化保持一致
最佳实践
对于需要在 Fury 中序列化 JDK 代理的开发人员,建议:
- 确保代理类和其
InvocationHandler都正确实现Serializable - 如果自定义
writeReplace方法,确保其返回的对象能够正确重建代理 - 考虑使用明确的接口来标识可替换对象(如示例中的
IWriteReplace接口)
技术启示
这个案例展示了序列化框架在处理复杂对象图时面临的挑战,特别是当对象自身参与控制序列化过程时(通过 writeReplace/readResolve)。框架设计需要考虑:
- 特殊方法的处理优先级
- 类型系统的完整性
- 与标准序列化行为的一致性
Apache Fury 通过这次修复,不仅解决了特定场景下的问题,也增强了框架处理复杂序列化场景的能力,为高性能序列化提供了更可靠的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19