Rivet项目中缓存节点的技术实现与优化方案
2025-06-19 20:03:45作者:龚格成
缓存机制的核心挑战
在Rivet项目开发过程中,缓存节点的实现遇到了两个关键性技术挑战。首先,当尝试将"当前用户输入"标记为缓存时,系统未能正确识别已有的缓存内容。其次,在连续交互场景下,新增交互(n+1)会导致系统完全忽略之前的缓存内容,重新开始构建缓存,这与缓存设计的初衷背道而驰。
问题现象分析
初始测试中,系统能够成功缓存首次交互及后续n次交互内容,表现符合预期。然而当引入第n+1次交互时,系统无法识别已有缓存,转而从头开始构建新的缓存结构。这种表现在单消息缓存场景下工作正常,但在多消息连续交互场景中出现功能失效。
技术解决方案
通过引入自定义代码节点,我们实现了更精细化的缓存控制方案。该方案包含以下关键技术点:
- 消息组装功能:动态处理1-10条输入消息,支持字符串和数组两种输入格式
- 智能类型转换:自动将字符串输入转换为标准聊天消息格式
- 缓存断点标记:仅在最后一条消息设置isCacheBreakpoint标志
- 令牌计数:实时计算消息内容的令牌数量
实现代码解析
核心代码采用JavaScript实现,主要包含assemblePrompt函数:
function assemblePrompt(inputs) {
const assembledMessages = [];
// 处理1-10条输入消息
for (let i = 1; i <= 10; i++) {
const inputName = `message${i}`;
if (inputs[inputName] && inputs[inputName].value) {
let message = inputs[inputName].value;
// 类型转换处理
if (typeof message === 'string') {
message = { type: 'user', message: message };
}
// 数组扁平化处理
if (Array.isArray(message)) {
assembledMessages.push(...message);
} else {
assembledMessages.push(message);
}
}
}
// 缓存断点设置
if (assembledMessages.length > 0) {
const lastIndex = assembledMessages.length - 1;
assembledMessages[lastIndex] = {
...assembledMessages[lastIndex],
isCacheBreakpoint: true
};
}
// 令牌计数
const tokenCount = assembledMessages.reduce((count, msg) =>
count + msg.message.split(' ').length, 0);
return {
assembledPrompt: {
type: 'chat-message[]',
value: assembledMessages
},
tokenCount: {
type: 'number',
value: tokenCount
}
};
}
方案优势
该优化方案具有以下技术优势:
- 精准缓存控制:只在最后一条消息设置缓存断点,确保缓存连续性
- 灵活输入处理:支持多种输入格式,提升组件复用性
- 性能监控:内置令牌计数功能,便于资源使用分析
- 扩展性强:可轻松调整支持的消息数量上限
实施建议
对于需要在Rivet项目中实现类似功能的开发者,建议:
- 根据实际业务需求调整支持的最大消息数量
- 考虑添加消息内容验证逻辑,确保输入质量
- 对于大规模应用,可考虑引入更精细的令牌计算算法
- 定期监控缓存命中率,优化断点设置策略
此方案成功解决了原始缓存节点在多轮对话场景下的功能缺陷,为复杂交互应用提供了可靠的缓存支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化Formily DevTools:让表单开发调试效率提升10倍的神器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246