ncnn框架中GFPGAN模型的GPU推理优化实践
2025-05-10 21:59:20作者:余洋婵Anita
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
问题背景
在深度学习模型部署过程中,Tencent开源的ncnn框架因其轻量高效的特点被广泛应用。近期在使用ncnn部署GFPGAN 1.4版本模型时,发现了一个值得注意的技术问题:在特定条件下,模型中的Reduction算子会在GPU推理时产生数值溢出。
问题现象分析
通过对比测试发现,当使用GFPGAN 1.3和1.4版本模型时,模型中的15个Reduction算子中,最后一个算子在GPU推理时会出现异常输出,表现为输出inf值(无穷大)。而在CPU环境下,同样的算子却能产生正确的数值输出。
测试数据显示:
- CPU环境下输出正常:1803979.250000、2963884.000000等合理数值
- GPU环境下输出异常:全部变为inf值
技术细节探究
深入分析模型结构后发现,这个问题与ncnn框架的浮点精度处理机制密切相关。关键发现包括:
-
精度设置的影响:当关闭
net.opt.use_fp16_storage
选项时,CPU推理正常而GPU推理异常;当启用该选项时,CPU和GPU都会产生异常输出。 -
算子分布特点:模型共包含15个Reduction算子,只有最后一个出现异常,说明问题具有特定性而非普遍性。
-
模型结构特点:GFPGAN模型包含大量卷积、重塑等常见算子,Reduction算子占比虽小但功能关键。
解决方案实现
基于上述分析,我们采用了"layer feature mask"精细调控原则来解决这个问题。具体实施步骤包括:
- 在原始的每一行结尾添加
31=18
参数配置 - 采用小片段逐步移除的测试方法
- 对比不同配置下的输出结果
31=18
这一特殊配置的含义是同时禁用Vulkan计算和FP16存储,这看似简单的调整却解决了复杂的精度溢出问题。
实践建议
对于在ncnn框架上部署类似模型的开发者,建议:
- 遇到GPU推理异常时,优先检查精度相关配置
- 采用分层测试方法,逐步定位问题算子
- 保持对Reduction等特殊算子的关注
- 建立CPU/GPU输出对比验证机制
总结
这个案例展示了深度学习模型部署中可能遇到的典型精度问题。通过精细化的配置调整和系统化的测试方法,我们成功解决了GFPGAN模型在ncnn框架上的GPU推理异常。这为类似问题的解决提供了可借鉴的思路,也提醒我们在模型部署过程中需要特别关注计算精度和硬件适配性问题。
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++089Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17