ncnn框架中GFPGAN模型的GPU推理优化实践
2025-05-10 04:34:49作者:余洋婵Anita
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
问题背景
在深度学习模型部署过程中,Tencent开源的ncnn框架因其轻量高效的特点被广泛应用。近期在使用ncnn部署GFPGAN 1.4版本模型时,发现了一个值得注意的技术问题:在特定条件下,模型中的Reduction算子会在GPU推理时产生数值溢出。
问题现象分析
通过对比测试发现,当使用GFPGAN 1.3和1.4版本模型时,模型中的15个Reduction算子中,最后一个算子在GPU推理时会出现异常输出,表现为输出inf值(无穷大)。而在CPU环境下,同样的算子却能产生正确的数值输出。
测试数据显示:
- CPU环境下输出正常:1803979.250000、2963884.000000等合理数值
- GPU环境下输出异常:全部变为inf值
技术细节探究
深入分析模型结构后发现,这个问题与ncnn框架的浮点精度处理机制密切相关。关键发现包括:
-
精度设置的影响:当关闭
net.opt.use_fp16_storage选项时,CPU推理正常而GPU推理异常;当启用该选项时,CPU和GPU都会产生异常输出。 -
算子分布特点:模型共包含15个Reduction算子,只有最后一个出现异常,说明问题具有特定性而非普遍性。
-
模型结构特点:GFPGAN模型包含大量卷积、重塑等常见算子,Reduction算子占比虽小但功能关键。
解决方案实现
基于上述分析,我们采用了"layer feature mask"精细调控原则来解决这个问题。具体实施步骤包括:
- 在原始的每一行结尾添加
31=18参数配置 - 采用小片段逐步移除的测试方法
- 对比不同配置下的输出结果
31=18这一特殊配置的含义是同时禁用Vulkan计算和FP16存储,这看似简单的调整却解决了复杂的精度溢出问题。
实践建议
对于在ncnn框架上部署类似模型的开发者,建议:
- 遇到GPU推理异常时,优先检查精度相关配置
- 采用分层测试方法,逐步定位问题算子
- 保持对Reduction等特殊算子的关注
- 建立CPU/GPU输出对比验证机制
总结
这个案例展示了深度学习模型部署中可能遇到的典型精度问题。通过精细化的配置调整和系统化的测试方法,我们成功解决了GFPGAN模型在ncnn框架上的GPU推理异常。这为类似问题的解决提供了可借鉴的思路,也提醒我们在模型部署过程中需要特别关注计算精度和硬件适配性问题。
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19