simpleRL-reason项目Ray任务提交问题分析与解决方案
2025-06-23 04:36:34作者:段琳惟
问题背景
在使用simpleRL-reason项目进行强化学习训练时,用户遇到了Ray任务提交失败的问题。具体表现为当尝试通过ray job submit命令运行训练脚本时,系统提示找不到指定的脚本文件。
错误现象
用户按照项目文档说明执行以下命令:
ray job submit --address="http://127.0.0.1:8265" \
--runtime-env-json='{
"pip": ["ray==2.12.0", "latex2sympy2", "timeout_decorator"]
}' -- /bin/bash /examples/script/train_ppo_qwen_base_math_lv35_new_1_node.sh
系统返回错误:
/bin/bash: /examples/script/train_ppo_qwen_base_math_lv35_new_1_node.sh: No such file or directory
问题分析
-
路径错误:初始命令中使用了绝对路径"/examples/script/...",这假设脚本存在于容器或系统的根目录下,而实际上脚本位于项目目录中。
-
工作目录未指定:Ray任务运行时需要一个明确的工作目录上下文,否则无法正确解析相对路径。
-
环境配置不足:仅指定了pip依赖,未完整配置运行时环境。
解决方案
方案一:使用正确的相对路径
ray job submit --address="http://127.0.0.1:8265" \
--runtime-env-json='{
"pip": ["ray==2.12.0", "latex2sympy2", "timeout_decorator"]
}' -- /bin/bash examples/script/train_ppo_qwen_base_math_lv35_1_node.sh
方案二:指定工作目录(推荐)
更完整的解决方案是明确指定工作目录:
ray job submit --address="http://127.0.0.1:8265" \
--runtime-env-json='{
"working_dir": "/path/to/simpleRL-reason/train/",
"pip": ["ray==2.12.0", "latex2sympy2", "timeout_decorator"]
}' -- /bin/bash examples/script/train_ppo_qwen_base_math_lv35_1_node.sh
技术要点
-
Ray运行时环境配置:Ray的runtime-env-json参数允许用户定义任务执行环境,包括Python依赖、工作目录等。
-
工作目录重要性:在分布式计算环境中,明确指定工作目录可以确保所有节点都能正确访问项目文件。
-
路径解析:在Ray集群中执行任务时,路径解析是基于任务提交时的工作环境,而非本地shell环境。
最佳实践建议
- 始终使用working_dir明确指定项目根目录
- 在runtime-env-json中完整定义所有依赖
- 使用相对路径而非绝对路径,提高可移植性
- 在提交任务前,先在本地测试脚本路径是否正确
通过正确配置Ray任务的工作目录和运行时环境,可以确保分布式训练任务能够顺利找到并执行所需的训练脚本。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
262
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
77