VLMEvalKit中CogVLM2多卡推理优化方案解析
2025-07-03 00:58:55作者:董斯意
问题背景
在VLMEvalKit项目中使用CogVLM2-Llama3-Chat-19B模型进行推理时,当模型大小超过单卡显存容量时,开发者尝试通过设置device_map="auto"
参数来实现自动多卡分配,但遇到了"Expected all tensors to be on the same device"的错误提示,表明模型部分组件被错误地分配到了不同设备上。
问题分析
该问题源于CogVLM2模型的特殊架构,特别是其视觉组件与语言模型的结合方式。当使用标准的device_map="auto"
参数时,Hugging Face的自动设备映射机制无法正确处理模型中某些特定模块的设备分配,导致部分张量被分散到不同GPU上,引发运行时错误。
解决方案
经过深入分析,我们开发了一套定制化的设备映射方案,主要包含以下几个关键点:
-
显存精确计算:通过
get_memory()
函数获取每张GPU的实际可用显存,考虑保留一定比例(alpha参数)作为缓冲。 -
分布式环境适配:考虑多机多卡场景下的设备映射,通过
get_rank_and_world_size()
获取当前进程的rank和world_size。 -
模块化设备分配:
- 为视觉组件(
model.vision
)指定固定设备 - 为EVA2CLIPModel等关键模块设置不分割标记
- 根据计算出的显存容量分配模型各部分
- 为视觉组件(
-
空权重初始化:使用
init_empty_weights()
上下文管理器先构建模型结构,再进行设备分配,减少内存占用。
实现细节
核心实现分为三个部分:
- 显存检测与分配:
def get_memory():
total_memory = torch.cuda.get_device_properties(0).total_memory
return total_memory / 1024 / 1024 / 1024 # 转换为GB
- 设备映射构建:
def build_device_map(model, default_map=None, no_split=None, alpha=0.97, beta=0.9):
# 计算每GPU可用显存
per_gpu_mem = get_memory() * alpha
memory_map = {rank: f'{beta * per_gpu_mem:.2f}GiB'}
# 构建完整设备映射
device_map = infer_auto_device_map(
model,
max_memory=memory_map,
no_split_module_classes=no_split_module
)
# 应用设备映射
return dispatch_model(model, device_map=device_map).eval()
- 模型加载与分配:
with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained(...)
model, _ = build_device_map(model, ['model.vision'], ["EVA2CLIPModel"])
技术要点
- alpha参数:控制显存使用率(默认0.97),避免OOM
- beta参数:主卡显存保留比例(默认0.9),确保系统稳定性
- no_split_module:防止关键模块被分割到不同设备
- default_map:强制特定模块分配到指定设备
应用效果
该方案成功解决了CogVLM2大模型在多GPU环境下的部署问题,具有以下优势:
- 精确控制各GPU显存使用量
- 确保模型关键组件位于合理设备
- 支持复杂模型架构的特殊分配需求
- 兼容分布式训练环境
总结
对于VLMEvalKit中的大模型推理任务,特别是像CogVLM2这样的多模态模型,标准的设备自动分配机制往往不能满足需求。通过定制化的设备映射方案,开发者可以更精细地控制模型各部分的设备分配,实现高效稳定的多卡推理。这一方案不仅适用于CogVLM2,也可为其他复杂架构的大模型部署提供参考。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K