VLMEvalKit中CogVLM2多卡推理优化方案解析
2025-07-03 13:44:42作者:董斯意
问题背景
在VLMEvalKit项目中使用CogVLM2-Llama3-Chat-19B模型进行推理时,当模型大小超过单卡显存容量时,开发者尝试通过设置device_map="auto"参数来实现自动多卡分配,但遇到了"Expected all tensors to be on the same device"的错误提示,表明模型部分组件被错误地分配到了不同设备上。
问题分析
该问题源于CogVLM2模型的特殊架构,特别是其视觉组件与语言模型的结合方式。当使用标准的device_map="auto"参数时,Hugging Face的自动设备映射机制无法正确处理模型中某些特定模块的设备分配,导致部分张量被分散到不同GPU上,引发运行时错误。
解决方案
经过深入分析,我们开发了一套定制化的设备映射方案,主要包含以下几个关键点:
-
显存精确计算:通过
get_memory()函数获取每张GPU的实际可用显存,考虑保留一定比例(alpha参数)作为缓冲。 -
分布式环境适配:考虑多机多卡场景下的设备映射,通过
get_rank_and_world_size()获取当前进程的rank和world_size。 -
模块化设备分配:
- 为视觉组件(
model.vision)指定固定设备 - 为EVA2CLIPModel等关键模块设置不分割标记
- 根据计算出的显存容量分配模型各部分
- 为视觉组件(
-
空权重初始化:使用
init_empty_weights()上下文管理器先构建模型结构,再进行设备分配,减少内存占用。
实现细节
核心实现分为三个部分:
- 显存检测与分配:
def get_memory():
total_memory = torch.cuda.get_device_properties(0).total_memory
return total_memory / 1024 / 1024 / 1024 # 转换为GB
- 设备映射构建:
def build_device_map(model, default_map=None, no_split=None, alpha=0.97, beta=0.9):
# 计算每GPU可用显存
per_gpu_mem = get_memory() * alpha
memory_map = {rank: f'{beta * per_gpu_mem:.2f}GiB'}
# 构建完整设备映射
device_map = infer_auto_device_map(
model,
max_memory=memory_map,
no_split_module_classes=no_split_module
)
# 应用设备映射
return dispatch_model(model, device_map=device_map).eval()
- 模型加载与分配:
with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained(...)
model, _ = build_device_map(model, ['model.vision'], ["EVA2CLIPModel"])
技术要点
- alpha参数:控制显存使用率(默认0.97),避免OOM
- beta参数:主卡显存保留比例(默认0.9),确保系统稳定性
- no_split_module:防止关键模块被分割到不同设备
- default_map:强制特定模块分配到指定设备
应用效果
该方案成功解决了CogVLM2大模型在多GPU环境下的部署问题,具有以下优势:
- 精确控制各GPU显存使用量
- 确保模型关键组件位于合理设备
- 支持复杂模型架构的特殊分配需求
- 兼容分布式训练环境
总结
对于VLMEvalKit中的大模型推理任务,特别是像CogVLM2这样的多模态模型,标准的设备自动分配机制往往不能满足需求。通过定制化的设备映射方案,开发者可以更精细地控制模型各部分的设备分配,实现高效稳定的多卡推理。这一方案不仅适用于CogVLM2,也可为其他复杂架构的大模型部署提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248