Ragas项目中的MetricWithLLM初始化错误分析与解决方案
问题背景
在使用Ragas项目进行问答系统评估时,开发者遇到了一个关于MetricWithLLM类初始化的问题。该错误表现为在调用评估函数时,系统提示缺少必需的run_config
参数。这个问题主要出现在0.1.9版本的Ragas库中,使用Python 3.11环境。
错误现象
开发者在使用Ragas的evaluate
函数计算问答系统评分时,系统抛出以下错误:
TypeError: MetricWithLLM.init() missing 1 required positional argument: 'run_config'
这个错误表明在初始化MetricWithLLM类时,缺少了必需的run_config参数。错误发生在尝试设置自定义的Azure OpenAI模型作为评估的LLM时。
根本原因分析
经过深入分析,我们发现这个问题主要由以下几个因素导致:
-
版本兼容性问题:在Ragas 0.1.9版本中,MetricWithLLM类的初始化确实需要run_config参数,但在后续版本中这个要求可能已被移除或修改。
-
错误的指标导入方式:开发者使用了
ContextRelevancy
类而不是直接导入context_relevancy
实例,这导致了初始化问题。 -
不正确的指标设置方法:开发者尝试通过直接设置
__setattr__
来修改指标的LLM属性,这不是推荐的做法。
解决方案
针对这个问题,我们推荐以下解决方案:
- 使用正确的指标导入方式:
将
ContextRelevancy
类替换为context_relevancy
实例,这是Ragas提供的预配置指标实例。
from ragas.metrics import (
answer_relevancy,
faithfulness,
context_relevancy # 正确的导入方式
)
- 简化指标列表: 直接使用预配置的指标实例,无需手动设置LLM属性。
metrics = [
faithfulness,
answer_relevancy,
context_relevancy
]
- 通过evaluate函数传递LLM:
在调用
evaluate
函数时直接传递LLM包装器,而不是单独为每个指标设置。
result = evaluate(
dataset=dataset,
metrics=metrics,
llm=ragas_azure_model,
embeddings=azure_embeddings
)
最佳实践建议
-
版本检查:确保使用Ragas的最新稳定版本,许多初始化问题在新版本中可能已经修复。
-
指标使用:优先使用Ragas提供的预配置指标实例,而不是直接使用指标类。
-
LLM配置:通过
evaluate
函数的参数统一配置LLM和embeddings,而不是单独为每个指标设置。 -
错误处理:在调用评估函数时添加适当的错误处理逻辑,捕获并记录可能的初始化错误。
总结
Ragas作为一个强大的问答系统评估框架,在使用过程中可能会遇到各种初始化问题。本文分析的MetricWithLLM初始化错误主要源于指标的不正确使用方式。通过采用正确的指标导入方式和配置方法,开发者可以避免这类问题,顺利地进行问答系统评估。对于使用Azure OpenAI等自定义LLM的场景,确保遵循框架推荐的配置方式至关重要。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









