ChemTSv2分子生成工具:从原理到实践指南
2025-06-01 00:09:14作者:胡唯隽
项目概述
ChemTSv2是一款基于蒙特卡洛树搜索(MCTS)算法的分子生成工具,是ChemTS和MPChemTS项目的升级版本。该项目由日本多个研究机构联合开发,旨在为科研人员提供高效、灵活的分子设计解决方案。
作为第二代工具,ChemTSv2在以下几个方面进行了显著改进:
- 提供了更简洁的配置文件接口,用户只需修改YAML配置文件即可运行实验
- 设计了更灵活的框架结构,支持用户自定义奖励函数、分子过滤器和树搜索策略
- 优化了并行计算能力,可支持大规模并行计算
技术原理
ChemTSv2的核心算法基于蒙特卡洛树搜索(MCTS),这是一种在人工智能领域广泛使用的启发式搜索算法。在分子生成场景中,算法通过以下步骤工作:
- 分子构建:从初始原子开始,逐步添加原子或官能团构建分子
- 树搜索:在化学空间中进行探索,评估不同分子结构的潜在价值
- 奖励评估:根据用户定义的奖励函数(如药物相似性、物化性质等)评估分子质量
- 策略优化:基于评估结果优化搜索策略,提高高质量分子的发现概率
安装指南
环境要求
- Python 3.11环境
- 如需使用大规模并行模式,需预先安装OpenMPI或MPICH
安装方式
单进程模式(适合小规模实验):
pip install chemtsv2
大规模并行模式(适合高性能计算环境):
pip install chemtsv2[mp]
使用教程
基础使用
- 首先获取项目代码(此处省略具体获取方式)
- 进入项目目录
单进程模式运行:
chemtsv2 -c config/setting.yaml
并行模式运行(使用4个进程):
mpiexec -n 4 chemtsv2-mp --config config/setting_mp.yaml
配置文件详解
ChemTSv2通过YAML配置文件控制所有参数,主要配置项包括:
- 分子生成参数:最大原子数、允许的元素类型、键类型等
- 奖励函数:可定义多个评估指标及其权重
- 搜索策略:探索与利用的平衡参数
- 输出设置:结果保存路径、日志级别等
高级功能
自定义奖励函数
用户可以通过继承基类实现自己的奖励函数,评估标准可以包括:
- 药物相似性指标(如QED, SA Score)
- 目标蛋白结合亲和力预测
- 特定物化性质范围(如logP, 分子量)
分子过滤器
可定义过滤条件排除不符合要求的分子,例如:
- 排除含有特定官能团的分子
- 限制环系统数量或大小
- 设置HBD/HBA数量范围
并行计算优化
对于大规模分子生成任务,ChemTSv2提供了:
- 多进程并行评估
- 负载均衡算法
- 分布式计算支持
应用案例
ChemTSv2已在多个领域取得成功应用,包括:
- 药物发现:针对特定靶点设计先导化合物
- 材料设计:优化光电材料分子结构
- 催化剂开发:探索高效催化剂分子
性能优化建议
- 对于小规模搜索(<1000分子),单进程模式通常足够
- 大规模搜索建议使用并行模式,进程数根据计算资源调整
- 奖励函数计算是性能瓶颈,应尽量优化其实现效率
- 合理设置搜索深度和宽度平衡探索与开发
引用方式
如您的研究中使用了ChemTSv2,请按以下格式引用:
@article{Ishida2023,
doi = {10.1002/wcms.1680},
year = {2023},
publisher = {Wiley},
author = {Shoichi Ishida and Tanuj Aasawat and Masato Sumita and Michio Katouda and Tatsuya Yoshizawa and Kazuki Yoshizoe and Koji Tsuda and Kei Terayama},
title = {ChemTSv2: Functional molecular design using de novo molecule generator},
journal = {{WIREs} Computational Molecular Science}
}
结语
ChemTSv2作为新一代分子生成工具,通过灵活的架构设计和高效的搜索算法,为计算化学和药物设计领域提供了强大支持。无论是学术研究还是工业应用,都能帮助科研人员快速探索广阔的化学空间,发现具有潜力的新型分子结构。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137