在AndroidX Media中使用自定义DashManifestParser实现离线播放
背景介绍
在Android多媒体开发中,我们经常需要处理DRM保护的内容。当使用DASH格式的媒体内容时,有时会遇到密钥标识符(KID)没有包含在DASH清单文件中的情况。这种情况下,我们需要自定义DashManifestParser来解析清单文件并添加必要的DRM信息。
问题场景
在AndroidX Media库中,开发者通常使用DownloadHelper类来处理媒体内容的离线下载和播放。然而,当我们需要使用自定义的DashManifestParser时,标准的DownloadHelper.forMediaItem方法无法满足需求,因为它内部使用了DefaultMediaSourceFactory,不支持自定义配置。
解决方案
在线播放实现
对于在线播放场景,我们可以直接创建自定义的DashMediaSource:
DashMediaSource.Factory(DownloadUtil.getHttpDataSourceFactory(requireContext()))
.setManifestParser(CustomDashManifestParser(keys))
.setDrmSessionManagerProvider { drmSessionManager }
.createMediaSource(dashMediaItem)
离线播放实现
对于离线播放,我们需要采用不同的方法来确保自定义的DashManifestParser能够被使用:
- 创建DownloadHelper:使用允许传入自定义MediaSource的构造函数
DownloadHelper(
dashMediaItem,
DashMediaSource.Factory(...)...createMediaSource(dashMediaItem),
DownloadHelper.getDefaultTrackSelectionParameters(context),
DefaultRendererCapabilitiesList.Factory(renderersFactory).createRendererCapabilitiesList())
- 处理已下载内容:如果已经存在下载请求,可以将其转换为MediaItem并使用自定义的MediaSource.Factory
downloadRequest.toMediaItem()
技术要点
-
自定义DashManifestParser:继承自DashManifestParser,重写相关方法以处理特殊的DRM信息。
-
DRM会话管理:确保DrmSessionManager正确配置,能够处理ClearKey保护的内容。
-
媒体源工厂:理解MediaSource.Factory的工作原理,知道如何注入自定义组件。
最佳实践
-
保持自定义解析器的轻量级,只修改必要的部分。
-
确保离线下载和在线播放使用相同的DRM配置,保证体验一致性。
-
在测试阶段充分验证各种网络条件下的播放行为。
总结
通过合理使用AndroidX Media库提供的灵活性,我们可以解决DRM保护内容在离线场景下的播放问题。关键在于理解DownloadHelper和MediaSource之间的关系,以及如何通过自定义组件来满足特殊需求。这种方法不仅适用于ClearKey保护的内容,也可以扩展到其他需要特殊处理的DRM方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00