LangChain Qdrant集成中自定义分片功能的正确使用方法
在分布式向量数据库应用中,多租户架构是一个常见需求。Qdrant作为一款高性能向量数据库,提供了自定义分片(Sharding)功能来支持这种场景。然而,在使用LangChain与Qdrant集成时,开发者可能会遇到关于自定义分片功能使用的问题。
问题背景
Qdrant的自定义分片功能允许用户根据特定键(如租户ID)将数据分布到不同的分片上。这种设计能够提高查询性能并实现数据隔离。在原生Qdrant客户端中,可以通过shard_key_selector
参数来指定数据应该写入哪个分片。
常见误区
许多开发者在使用LangChain的Qdrant集成时,会尝试通过kwargs
参数传递分片选择器,例如:
vector_store.add_documents([document], kwargs={"shard_key": "Movo"})
这种方式会导致AssertionError
,因为LangChain的Qdrant集成并未设计为通过kwargs
传递分片选择器。
正确使用方法
正确的做法是直接使用shard_key_selector
参数:
vector_store.add_documents([document_1], shard_key_selector="Movo")
vector_store.add_documents([document_2], shard_key_selector="Bravo")
实现原理
在底层实现上,LangChain的Qdrant集成会将shard_key_selector
参数直接传递给Qdrant客户端的upsert
方法。这种方式保持了与原生Qdrant API的一致性,同时提供了LangChain框架的便利性。
最佳实践
-
初始化集合时明确分片配置:在创建集合时,应明确指定分片数量、复制因子和分片方法。
-
提前创建分片键:在写入数据前,确保所有可能用到的分片键都已创建。
-
统一分片策略:确保读取和写入操作使用相同的分片键,以保证数据一致性。
-
监控分片负载:定期检查各分片的负载情况,必要时进行重新平衡。
性能考虑
使用自定义分片可以显著提高多租户场景下的查询性能,因为:
- 查询可以只针对特定分片执行,减少扫描范围
- 不同租户的数据物理隔离,减少资源竞争
- 可以根据租户特点优化分片配置
总结
LangChain与Qdrant的集成为开发者提供了便捷的向量存储解决方案。理解正确的分片参数传递方式对于构建高效的多租户应用至关重要。通过直接使用shard_key_selector
参数而非kwargs
,开发者可以充分利用Qdrant的自定义分片功能,构建高性能的向量搜索应用。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









