在PyTorch Metric Learning中使用对比损失处理配对数据
2025-06-04 21:56:28作者:蔡丛锟
理解配对数据场景
在机器学习任务中,我们经常会遇到配对数据(pairwise data)的场景,即数据集中的每个样本都是由两个对象(如图形、图像或文本)组成的对(pair),并带有标签指示这两个对象是否属于同一类别。这种数据结构在相似性学习、匹配任务和验证系统中非常常见。
损失函数的选择
PyTorch Metric Learning库提供了多种损失函数来处理这类问题。对于配对数据,最常用的损失函数包括:
- NTXentLoss:归一化温度缩放交叉熵损失,常用于对比学习
- ContrastiveLoss:对比损失,直接处理正负样本对
- SelfSupervisedLoss:自监督损失包装器,适用于特定数据组织形式
SelfSupervisedLoss的适用条件
SelfSupervisedLoss包装器适用于特定的数据组织形式,它要求:
- 有两组嵌入向量x和y
- x[i]和y[i]必须是正样本对
- x[i]和y[j]对于所有j≠i自动被视为负样本对
这意味着它不适合处理显式标记为负样本的配对数据,因为它的设计假设x[i]和y[i]总是正样本对。
处理显式正负标记的配对数据
对于包含显式正负标记的配对数据(1表示正对,0表示负对),更合适的做法是直接使用NTXentLoss或ContrastiveLoss。实现的关键在于正确构造标签张量,使得:
- 相同标签的样本被视为正样本对
- 不同标签的样本被视为负样本对
实现示例
以下是一个处理配对数据的典型实现方式:
# 前向传播获取两个对象的嵌入表示
out1 = model(batch["graph1"])
out2 = model(batch["graph2"])
# 获取配对标签
y = batch["label"].to(bool)
# 合并所有嵌入表示
out = torch.cat((out1, out2))
# 构造初始标签
loss_fn_labels = torch.arange(len(out), device=out.device)
# 标记正样本对
labels_2n = torch.cat((y, y))
# 调整正样本对的标签使其匹配
temp = loss_fn_labels[labels_2n]
temp[len(temp) // 2 :] = temp[: len(temp) // 2]
loss_fn_labels[labels_2n] = temp
# 计算损失
loss = loss_fn(out, loss_fn_labels)
技术要点解析
- 标签构造:通过巧妙构造标签张量,确保正样本对被正确识别
- 负样本处理:所有未被显式标记为正样本的对自动被视为负样本
- 批量处理:这种方法可以高效地处理批量数据中的所有可能配对
最佳实践建议
- 对于显式标记正负样本的配对数据,优先考虑NTXentLoss或ContrastiveLoss
- 确保正样本对在标签张量中被正确匹配
- 考虑数据增强策略来增加正样本对的数量
- 调整温度参数以优化模型性能
通过正确理解配对数据的特性和选择合适的损失函数,可以有效地训练出高质量的相似性学习模型。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
177
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
864
512

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K