Smile项目中的大规模谱聚类优化:免距离矩阵计算新方法
2025-06-03 23:46:46作者:范靓好Udolf
谱聚类作为一种强大的无监督学习算法,在数据科学领域有着广泛应用。然而传统谱聚类算法需要计算N×N的距离矩阵,当数据量N极大时(特别是N远大于特征维度p时),这会带来巨大的计算和存储开销。本文将介绍Smile机器学习库在v4.3.0版本中引入的创新性解决方案——无需计算完整距离矩阵的谱聚类实现。
传统谱聚类的瓶颈
传统谱聚类算法通常包含三个关键步骤:
- 构建相似度矩阵(N×N)
- 计算拉普拉斯矩阵
- 对拉普拉斯矩阵进行特征分解
其中第一步构建相似度矩阵的计算复杂度为O(N²),当N达到百万级别时,不仅计算耗时,存储这样的矩阵对内存要求也极高(例如100万样本需要约8TB内存存储双精度浮点数)。
创新方法原理
Smile库新实现的方法基于一个关键发现:当使用余弦相似度或皮尔逊相关系数作为相似性度量时,可以绕过显式计算N×N距离矩阵的步骤。该方法直接利用原始数据矩阵X(N×p)进行以下操作:
- 数据标准化:对特征矩阵进行中心化和归一化处理
- 低秩近似:通过矩阵分解技术直接获得数据的低维嵌入
- 特征提取:在低维空间进行特征值分解
这种方法将复杂度从O(N²)降低到O(Np),当p远小于N时,节省的计算和存储资源非常可观。
技术实现细节
在Smile v4.3.0中,这一创新通过SpectralClustering.fit(int[][], Options)方法实现。其核心优势包括:
- 内存效率:只需保持原始数据矩阵,不生成中间的大规模距离矩阵
- 计算效率:利用矩阵运算的优化,避免不必要的重复计算
- 灵活性:支持多种预处理和后处理选项
适用场景与限制
该方法特别适合以下场景:
- 高维数据(如图像、文本等)的聚类
- 样本量极大(百万级以上)的数据集
- 需要使用余弦相似度或相关度量的应用
需要注意的是,该方法目前仅支持基于余弦相似度的度量,对于其他距离度量(如欧氏距离)仍需传统方法。
性能对比
在实际测试中,对于N=1,000,000,p=100的数据集:
- 传统方法:需要约8TB内存,计算时间数小时
- 新方法:仅需约800MB内存,计算时间分钟级
使用建议
对于大规模数据集,建议:
- 首先确认数据特征是否需要标准化
- 评估余弦相似度是否适合当前问题
- 从小规模数据开始测试,逐步扩大规模
Smile库的这一创新为大规模数据聚类提供了实用解决方案,使研究人员和工程师能够在普通计算设备上处理以前认为不可能的大规模聚类问题。随着数据规模的持续增长,这类高效算法将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210