Smile项目中的大规模谱聚类优化:免距离矩阵计算新方法
2025-06-03 05:36:28作者:范靓好Udolf
谱聚类作为一种强大的无监督学习算法,在数据科学领域有着广泛应用。然而传统谱聚类算法需要计算N×N的距离矩阵,当数据量N极大时(特别是N远大于特征维度p时),这会带来巨大的计算和存储开销。本文将介绍Smile机器学习库在v4.3.0版本中引入的创新性解决方案——无需计算完整距离矩阵的谱聚类实现。
传统谱聚类的瓶颈
传统谱聚类算法通常包含三个关键步骤:
- 构建相似度矩阵(N×N)
- 计算拉普拉斯矩阵
- 对拉普拉斯矩阵进行特征分解
其中第一步构建相似度矩阵的计算复杂度为O(N²),当N达到百万级别时,不仅计算耗时,存储这样的矩阵对内存要求也极高(例如100万样本需要约8TB内存存储双精度浮点数)。
创新方法原理
Smile库新实现的方法基于一个关键发现:当使用余弦相似度或皮尔逊相关系数作为相似性度量时,可以绕过显式计算N×N距离矩阵的步骤。该方法直接利用原始数据矩阵X(N×p)进行以下操作:
- 数据标准化:对特征矩阵进行中心化和归一化处理
- 低秩近似:通过矩阵分解技术直接获得数据的低维嵌入
- 特征提取:在低维空间进行特征值分解
这种方法将复杂度从O(N²)降低到O(Np),当p远小于N时,节省的计算和存储资源非常可观。
技术实现细节
在Smile v4.3.0中,这一创新通过SpectralClustering.fit(int[][], Options)方法实现。其核心优势包括:
- 内存效率:只需保持原始数据矩阵,不生成中间的大规模距离矩阵
- 计算效率:利用矩阵运算的优化,避免不必要的重复计算
- 灵活性:支持多种预处理和后处理选项
适用场景与限制
该方法特别适合以下场景:
- 高维数据(如图像、文本等)的聚类
- 样本量极大(百万级以上)的数据集
- 需要使用余弦相似度或相关度量的应用
需要注意的是,该方法目前仅支持基于余弦相似度的度量,对于其他距离度量(如欧氏距离)仍需传统方法。
性能对比
在实际测试中,对于N=1,000,000,p=100的数据集:
- 传统方法:需要约8TB内存,计算时间数小时
- 新方法:仅需约800MB内存,计算时间分钟级
使用建议
对于大规模数据集,建议:
- 首先确认数据特征是否需要标准化
- 评估余弦相似度是否适合当前问题
- 从小规模数据开始测试,逐步扩大规模
Smile库的这一创新为大规模数据聚类提供了实用解决方案,使研究人员和工程师能够在普通计算设备上处理以前认为不可能的大规模聚类问题。随着数据规模的持续增长,这类高效算法将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 Python案例资源下载 - 从入门到精通的完整项目代码合集 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.48 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
298
暂无简介
Dart
548
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
Ascend Extension for PyTorch
Python
88
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
125