Layer 2 网络邻居发现工具技术文档
2024-12-26 11:34:16作者:仰钰奇
1. 安装指南
1.1 环境要求
在开始安装之前,请确保您的系统满足以下要求:
- Python 2.7 或 3.4 及以上版本
- Scapy 库,用于网络功能,如 ARP ping
1.2 安装步骤
您可以通过以下两种方式安装项目依赖:
1.2.1 使用包管理器安装 Scapy
如果您已经安装了包管理器(如 apt、yum 或 brew),可以直接使用包管理器安装 Scapy:
$ sudo apt-get install python-scapy # 对于 Debian/Ubuntu 系统
$ sudo yum install scapy # 对于 CentOS/RHEL 系统
$ brew install scapy # 对于 macOS 系统
1.2.2 使用虚拟环境安装
推荐使用虚拟环境来隔离项目依赖,避免与系统全局 Python 环境冲突。以下是使用虚拟环境的安装步骤:
$ virtualenv virtualenv # 创建虚拟环境
$ source virtualenv/bin/activate # 激活虚拟环境
$ pip install -r requirements.txt # 安装项目依赖
2. 项目的使用说明
2.1 基本用法
项目提供了一个命令行工具 neighbourhood.py,用于发现本地网络中的主机。使用以下命令运行工具:
$ sudo ./neighbourhood.py [-i <interface>]
其中,-i 参数用于指定网络接口(如 eth0 或 wlan0)。如果不指定接口,工具将使用默认的网络接口。
2.2 输出结果
工具运行后,将输出本地网络中所有活动主机的 IP 地址和 MAC 地址。例如:
192.168.1.1 - 00:11:22:33:44:55
192.168.1.2 - 66:77:88:99:AA:BB
3. 项目 API 使用文档
3.1 核心功能
项目的核心功能是通过 ARP ping 发现本地网络中的主机。以下是主要功能的 API 说明:
3.1.1 discover_hosts(interface=None)
- 功能: 发现指定网络接口上的所有活动主机。
- 参数:
interface: 字符串类型,指定网络接口。如果为None,则使用默认接口。
- 返回值: 返回一个字典,键为 IP 地址,值为 MAC 地址。
3.1.2 arp_ping(ip, interface=None)
- 功能: 向指定 IP 地址发送 ARP ping。
- 参数:
ip: 字符串类型,目标 IP 地址。interface: 字符串类型,指定网络接口。如果为None,则使用默认接口。
- 返回值: 如果目标主机响应,则返回其 MAC 地址;否则返回
None。
3.2 示例代码
以下是一个使用项目 API 的示例代码:
from neighbourhood import discover_hosts, arp_ping
# 发现所有活动主机
hosts = discover_hosts(interface='eth0')
for ip, mac in hosts.items():
print(f"{ip} - {mac}")
# 向特定 IP 发送 ARP ping
mac_address = arp_ping('192.168.1.1', interface='eth0')
if mac_address:
print(f"Host is alive: {mac_address}")
else:
print("Host is not responding")
4. 项目安装方式
4.1 从源码安装
您可以通过以下步骤从源码安装项目:
- 克隆项目仓库:
$ git clone https://github.com/your-repo/neighbourhood.git $ cd neighbourhood - 创建并激活虚拟环境:
$ virtualenv virtualenv $ source virtualenv/bin/activate - 安装项目依赖:
$ pip install -r requirements.txt
4.2 使用 pip 安装
如果项目已经发布到 PyPI,您可以直接使用 pip 安装:
$ pip install neighbourhood
结语
本文档详细介绍了 Layer 2 网络邻居发现工具的安装、使用和 API 文档。通过本文档,您可以快速上手并使用该工具来发现本地网络中的活动主机。如果您有任何问题或建议,欢迎反馈。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178