Layer 2 网络邻居发现工具技术文档
2024-12-26 17:29:22作者:仰钰奇
1. 安装指南
1.1 环境要求
在开始安装之前,请确保您的系统满足以下要求:
- Python 2.7 或 3.4 及以上版本
- Scapy 库,用于网络功能,如 ARP ping
1.2 安装步骤
您可以通过以下两种方式安装项目依赖:
1.2.1 使用包管理器安装 Scapy
如果您已经安装了包管理器(如 apt、yum 或 brew),可以直接使用包管理器安装 Scapy:
$ sudo apt-get install python-scapy # 对于 Debian/Ubuntu 系统
$ sudo yum install scapy # 对于 CentOS/RHEL 系统
$ brew install scapy # 对于 macOS 系统
1.2.2 使用虚拟环境安装
推荐使用虚拟环境来隔离项目依赖,避免与系统全局 Python 环境冲突。以下是使用虚拟环境的安装步骤:
$ virtualenv virtualenv # 创建虚拟环境
$ source virtualenv/bin/activate # 激活虚拟环境
$ pip install -r requirements.txt # 安装项目依赖
2. 项目的使用说明
2.1 基本用法
项目提供了一个命令行工具 neighbourhood.py,用于发现本地网络中的主机。使用以下命令运行工具:
$ sudo ./neighbourhood.py [-i <interface>]
其中,-i 参数用于指定网络接口(如 eth0 或 wlan0)。如果不指定接口,工具将使用默认的网络接口。
2.2 输出结果
工具运行后,将输出本地网络中所有活动主机的 IP 地址和 MAC 地址。例如:
192.168.1.1 - 00:11:22:33:44:55
192.168.1.2 - 66:77:88:99:AA:BB
3. 项目 API 使用文档
3.1 核心功能
项目的核心功能是通过 ARP ping 发现本地网络中的主机。以下是主要功能的 API 说明:
3.1.1 discover_hosts(interface=None)
- 功能: 发现指定网络接口上的所有活动主机。
- 参数:
interface: 字符串类型,指定网络接口。如果为None,则使用默认接口。
- 返回值: 返回一个字典,键为 IP 地址,值为 MAC 地址。
3.1.2 arp_ping(ip, interface=None)
- 功能: 向指定 IP 地址发送 ARP ping。
- 参数:
ip: 字符串类型,目标 IP 地址。interface: 字符串类型,指定网络接口。如果为None,则使用默认接口。
- 返回值: 如果目标主机响应,则返回其 MAC 地址;否则返回
None。
3.2 示例代码
以下是一个使用项目 API 的示例代码:
from neighbourhood import discover_hosts, arp_ping
# 发现所有活动主机
hosts = discover_hosts(interface='eth0')
for ip, mac in hosts.items():
print(f"{ip} - {mac}")
# 向特定 IP 发送 ARP ping
mac_address = arp_ping('192.168.1.1', interface='eth0')
if mac_address:
print(f"Host is alive: {mac_address}")
else:
print("Host is not responding")
4. 项目安装方式
4.1 从源码安装
您可以通过以下步骤从源码安装项目:
- 克隆项目仓库:
$ git clone https://github.com/your-repo/neighbourhood.git $ cd neighbourhood - 创建并激活虚拟环境:
$ virtualenv virtualenv $ source virtualenv/bin/activate - 安装项目依赖:
$ pip install -r requirements.txt
4.2 使用 pip 安装
如果项目已经发布到 PyPI,您可以直接使用 pip 安装:
$ pip install neighbourhood
结语
本文档详细介绍了 Layer 2 网络邻居发现工具的安装、使用和 API 文档。通过本文档,您可以快速上手并使用该工具来发现本地网络中的活动主机。如果您有任何问题或建议,欢迎反馈。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1