KWOK项目中实现Vertical Pod Autoscaler的正确配置方法
2025-06-28 20:03:46作者:温艾琴Wonderful
Vertical Pod Autoscaler(VPA)是Kubernetes中用于自动调整Pod资源请求的重要组件。在KWOK这个Kubernetes模拟环境中配置VPA时,开发者可能会遇到VPA不生效的问题。本文将详细介绍在KWOK集群中正确配置VPA的步骤和原理。
VPA在KWOK环境中的特殊性
KWOK作为一个Kubernetes模拟环境,与传统Kubernetes集群有一些关键区别。VPA的正常工作需要三个核心组件协同工作:
- Admission Controller:负责拦截Pod创建请求并注入VPA建议的资源值
- Recommender:分析指标数据并提供资源建议
- Updater:负责驱逐需要调整资源的Pod
在真实集群中,这些组件通常以Pod形式运行,但在KWOK的二进制运行时模式下,需要以特殊方式启动。
详细配置步骤
1. 准备KWOK集群
首先创建带有必要组件的KWOK集群:
kwokctl create cluster \
--enable-metrics-server \
--config ./kwokctl.yaml \
--config ./metrics-usage.yaml \
--runtime binary
2. 创建节点并设置资源
kwokctl scale node \
--replicas 1 \
--param '.allocatable.cpu="4000m"'
3. 部署VPA核心组件
需要分别启动VPA的三个核心组件:
Admission Controller(新终端):
cd autoscaler/vertical-pod-autoscaler/ && \
NAMESPACE=kube-system go run ./pkg/admission-controller \
--kubeconfig ~/.kube/config \
--client-ca-file ~/.kwok/clusters/kwok/pki/ca.crt \
--tls-cert-file ~/.kwok/clusters/kwok/pki/admin.crt \
--tls-private-key ~/.kwok/clusters/kwok/pki/admin.key \
--port 8080
Recommender(新终端):
cd autoscaler/vertical-pod-autoscaler/ && \
NAMESPACE=kube-system go run ./pkg/recommender \
--kubeconfig ~/.kube/config
Updater(新终端):
cd autoscaler/vertical-pod-autoscaler/ && \
NAMESPACE=kube-system go run ./pkg/updater \
--kubeconfig ~/.kube/config
4. 应用VPA CRD和RBAC
kubectl apply -f ./autoscaler/vertical-pod-autoscaler/deploy/vpa-v1-crd-gen.yaml
kubectl apply -f ./autoscaler/vertical-pod-autoscaler/deploy/vpa-rbac.yaml
常见问题解决方案
1. VPA不响应Pod创建
确保三个组件都在运行且没有报错。在KWOK中,必须分别在不同的终端中运行这三个进程。
2. 资源建议未应用
检查Admission Controller日志,确认它是否成功拦截了Pod创建请求。在KWOK中,可能需要手动为Pod添加资源使用注解:
kubectl patch pod <pod-name> --type=json -p='[{"op":"add","path":"/metadata/annotations","value":{"kwok.x-k8s.io/usage-cpu":"800m","kwok.x-k8s.io/usage-memory":"380Mi"}}]'
3. 端口冲突问题
如果遇到端口443权限问题,可以将Admission Controller端口改为8080,如上述配置所示。
验证VPA工作
部署测试应用和VPA配置后,可以通过以下命令验证:
kubectl get vpa
kubectl get pod -o yaml | grep -i cpu
成功时应该能看到VPA建议的资源值被应用到Pod上。
总结
在KWOK环境中配置VPA需要特别注意其模拟环境的特殊性。通过正确启动三个核心组件并合理配置,可以实现与真实集群相似的自动垂直扩缩容功能。理解每个组件的作用和交互方式,有助于快速排查和解决配置过程中的各种问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882