KWOK项目中实现Vertical Pod Autoscaler的正确配置方法
2025-06-28 23:03:53作者:温艾琴Wonderful
Vertical Pod Autoscaler(VPA)是Kubernetes中用于自动调整Pod资源请求的重要组件。在KWOK这个Kubernetes模拟环境中配置VPA时,开发者可能会遇到VPA不生效的问题。本文将详细介绍在KWOK集群中正确配置VPA的步骤和原理。
VPA在KWOK环境中的特殊性
KWOK作为一个Kubernetes模拟环境,与传统Kubernetes集群有一些关键区别。VPA的正常工作需要三个核心组件协同工作:
- Admission Controller:负责拦截Pod创建请求并注入VPA建议的资源值
- Recommender:分析指标数据并提供资源建议
- Updater:负责驱逐需要调整资源的Pod
在真实集群中,这些组件通常以Pod形式运行,但在KWOK的二进制运行时模式下,需要以特殊方式启动。
详细配置步骤
1. 准备KWOK集群
首先创建带有必要组件的KWOK集群:
kwokctl create cluster \
--enable-metrics-server \
--config ./kwokctl.yaml \
--config ./metrics-usage.yaml \
--runtime binary
2. 创建节点并设置资源
kwokctl scale node \
--replicas 1 \
--param '.allocatable.cpu="4000m"'
3. 部署VPA核心组件
需要分别启动VPA的三个核心组件:
Admission Controller(新终端):
cd autoscaler/vertical-pod-autoscaler/ && \
NAMESPACE=kube-system go run ./pkg/admission-controller \
--kubeconfig ~/.kube/config \
--client-ca-file ~/.kwok/clusters/kwok/pki/ca.crt \
--tls-cert-file ~/.kwok/clusters/kwok/pki/admin.crt \
--tls-private-key ~/.kwok/clusters/kwok/pki/admin.key \
--port 8080
Recommender(新终端):
cd autoscaler/vertical-pod-autoscaler/ && \
NAMESPACE=kube-system go run ./pkg/recommender \
--kubeconfig ~/.kube/config
Updater(新终端):
cd autoscaler/vertical-pod-autoscaler/ && \
NAMESPACE=kube-system go run ./pkg/updater \
--kubeconfig ~/.kube/config
4. 应用VPA CRD和RBAC
kubectl apply -f ./autoscaler/vertical-pod-autoscaler/deploy/vpa-v1-crd-gen.yaml
kubectl apply -f ./autoscaler/vertical-pod-autoscaler/deploy/vpa-rbac.yaml
常见问题解决方案
1. VPA不响应Pod创建
确保三个组件都在运行且没有报错。在KWOK中,必须分别在不同的终端中运行这三个进程。
2. 资源建议未应用
检查Admission Controller日志,确认它是否成功拦截了Pod创建请求。在KWOK中,可能需要手动为Pod添加资源使用注解:
kubectl patch pod <pod-name> --type=json -p='[{"op":"add","path":"/metadata/annotations","value":{"kwok.x-k8s.io/usage-cpu":"800m","kwok.x-k8s.io/usage-memory":"380Mi"}}]'
3. 端口冲突问题
如果遇到端口443权限问题,可以将Admission Controller端口改为8080,如上述配置所示。
验证VPA工作
部署测试应用和VPA配置后,可以通过以下命令验证:
kubectl get vpa
kubectl get pod -o yaml | grep -i cpu
成功时应该能看到VPA建议的资源值被应用到Pod上。
总结
在KWOK环境中配置VPA需要特别注意其模拟环境的特殊性。通过正确启动三个核心组件并合理配置,可以实现与真实集群相似的自动垂直扩缩容功能。理解每个组件的作用和交互方式,有助于快速排查和解决配置过程中的各种问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1