Apache OpenWhisk Python 客户端技术文档
2024-12-23 10:12:15作者:邵娇湘
1. 安装指南
环境要求
- Python 3.6 或更高版本
requests库(用于发送 HTTP 请求)
安装步骤
-
安装 Python:确保你的系统上已经安装了 Python 3.6 或更高版本。你可以通过以下命令检查 Python 版本:
python3 --version -
安装
requests库:使用pip安装requests库,该库用于与 OpenWhisk 的 REST API 进行交互。pip install requests
2. 项目的使用说明
使用示例
以下是一个使用 Python 调用 OpenWhisk 中 echo 动作的示例代码:
import subprocess
import requests
APIHOST = 'https://openwhisk.ng.bluemix.net'
AUTH_KEY = subprocess.check_output("wsk property get --auth", shell=True).split()[2]
NAMESPACE = 'whisk.system'
ACTION = 'utils/echo'
PARAMS = {'myKey':'myValue'}
BLOCKING = 'true'
RESULT = 'true'
url = APIHOST + '/api/v1/namespaces/' + NAMESPACE + '/actions/' + ACTION
user_pass = AUTH_KEY.split(':')
response = requests.post(url, json=PARAMS, params={'blocking': BLOCKING, 'result': RESULT}, auth=(user_pass[0], user_pass[1]))
print(response.text)
代码说明
- APIHOST:OpenWhisk 的 API 主机地址。
- AUTH_KEY:通过
wsk命令获取的认证密钥。 - NAMESPACE:命名空间,通常为
whisk.system。 - ACTION:要调用的动作名称,例如
utils/echo。 - PARAMS:传递给动作的参数。
- BLOCKING 和 RESULT:控制请求的阻塞和结果返回方式。
3. 项目 API 使用文档
API 调用方式
OpenWhisk 提供了 REST API,可以通过 Python 的 requests 库进行调用。以下是一些常见的 API 调用方式:
调用动作
response = requests.post(url, json=PARAMS, params={'blocking': BLOCKING, 'result': RESULT}, auth=(user_pass[0], user_pass[1]))
获取动作列表
url = APIHOST + '/api/v1/namespaces/' + NAMESPACE + '/actions'
response = requests.get(url, auth=(user_pass[0], user_pass[1]))
print(response.text)
创建动作
url = APIHOST + '/api/v1/namespaces/' + NAMESPACE + '/actions/myAction'
response = requests.put(url, json=ACTION_CODE, auth=(user_pass[0], user_pass[1]))
print(response.text)
API 参数说明
- url:API 的完整 URL。
- json:传递给 API 的 JSON 数据。
- params:URL 参数。
- auth:认证信息,通常为
user:password格式。
4. 项目安装方式
通过 pip 安装
目前没有官方的 Python 客户端库,但你可以通过 pip 安装 requests 库来使用 OpenWhisk 的 REST API。
pip install requests
手动安装
如果你需要手动安装 requests 库,可以从其官方 GitHub 仓库下载源码并进行安装:
git clone https://github.com/psf/requests.git
cd requests
python setup.py install
通过以上步骤,你可以成功安装并使用 Python 与 OpenWhisk 进行交互。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355