Cosmos-Predict2项目:Video2World模型的后训练与推理实践指南
2025-06-19 01:41:18作者:房伟宁
概述
本文将详细介绍如何在Cosmos-Predict2项目中实现Video2World模型的后训练与推理流程。Video2World是一种先进的视频生成模型,能够根据文本描述和输入图像生成高质量的视频内容,特别适用于机器人操作场景的构建与预测。
环境准备
硬件要求
- 推荐使用配备多块高性能GPU的服务器
- 显存需求:
- 2B模型:至少8块GPU
- 14B模型:至少4节点32块GPU
软件依赖
- Python 3.8+
- PyTorch 2.0+
- 必要的Python包:numpy, albumentations, pytorch3d等
- 建议使用Docker容器确保环境一致性
数据准备
数据集下载
Video2World模型训练需要特定的机器人操作视频数据集。数据集包含视频文件和对应的文本描述,格式如下:
datasets/benchmark_train/gr1/
├── metas/ # 文本描述文件
├── videos/ # 视频文件
└── t5_xxl/ # 预计算的文本嵌入
数据预处理
- 下载原始数据集
- 提取视频帧并统一分辨率
- 使用T5-XXL模型预计算文本嵌入:
python -m scripts.get_t5_embeddings_from_groot_dataset \
--dataset_path datasets/benchmark_train/gr1
模型后训练
2B模型训练
执行以下命令启动2B模型的训练:
EXP=predict2_video2world_training_2b_groot_gr1_480
torchrun --nproc_per_node=8 --master_port=12341 \
-m scripts.train \
--config=cosmos_predict2/configs/base/config.py \
--experiment=${EXP}
14B模型训练
对于更大的14B模型,需要多节点训练:
EXP=predict2_video2world_training_14b_groot_gr1_480
NVTE_FUSED_ATTN=0 torchrun --nproc_per_node=8 --nnodes=4 \
--rdzv_id 123 --rdzv_backend c10d \
-m scripts.train \
--config=cosmos_predict2/configs/base/config.py \
--experiment=${EXP}
训练监控
训练过程中,模型检查点会保存在以下目录结构:
checkpoints/posttraining/video2world/2b_groot_gr1_480/
├── checkpoints/
│ ├── model/ # 模型参数
│ ├── optim/ # 优化器状态
│ └── trainer/ # 训练状态
└── latest_checkpoint.txt
模型推理
基础推理示例
使用训练好的模型生成视频:
torchrun --nproc_per_node=8 --master_port=12341 \
-m examples.video2world_gr00t \
--model_size 14B \
--gr00t_variant gr1 \
--prompt "机器人操作描述文本" \
--input_path 输入图片路径.png \
--save_path 输出视频路径.mp4
批量推理
对于大规模评估,可以使用批量处理模式:
- 准备输入JSON文件
python -m scripts.prepare_batch_input_json \
--dataset_path 数据集路径 \
--output_path batch_input.json
- 执行批量推理
python -m examples.video2world_gr00t \
--batch_input_json batch_input.json \
--disable_guardrail
质量优化技巧
使用拒绝采样(rejection sampling)提升生成质量:
torchrun --nproc_per_node=8 \
-m examples.video2world_bestofn \
--num_generations 4 \ # 生成4个候选视频
--save_path 输出目录
应用场景
Video2World模型特别适用于以下场景:
- 机器人操作构建与训练
- 工业自动化流程预演
- 虚拟环境中的物体交互构建
- 机器人学习算法的训练数据生成
性能优化建议
- 对于14B模型,禁用融合注意力(NVTE_FUSED_ATTN=0)可提高稳定性
- 使用混合精度训练减少显存占用
- 合理设置视频分辨率和帧数以平衡质量与性能
- 多节点训练时确保网络带宽充足
常见问题解决
- 依赖冲突:检查并调整h11和httpcore的版本
- 显存不足:减小batch size或降低分辨率
- 视频质量不佳:尝试拒绝采样或调整温度参数
- 训练不稳定:检查学习率设置和数据分布
通过本文介绍的流程,开发者可以充分利用Cosmos-Predict2项目的Video2World模型,实现高质量的机器人操作视频生成,为机器人学习和构建提供强大的工具支持。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878