Cosmos-Predict2项目:Video2World模型的后训练与推理实践指南
2025-06-19 01:10:02作者:房伟宁
概述
本文将详细介绍如何在Cosmos-Predict2项目中实现Video2World模型的后训练与推理流程。Video2World是一种先进的视频生成模型,能够根据文本描述和输入图像生成高质量的视频内容,特别适用于机器人操作场景的构建与预测。
环境准备
硬件要求
- 推荐使用配备多块高性能GPU的服务器
- 显存需求:
- 2B模型:至少8块GPU
- 14B模型:至少4节点32块GPU
软件依赖
- Python 3.8+
- PyTorch 2.0+
- 必要的Python包:numpy, albumentations, pytorch3d等
- 建议使用Docker容器确保环境一致性
数据准备
数据集下载
Video2World模型训练需要特定的机器人操作视频数据集。数据集包含视频文件和对应的文本描述,格式如下:
datasets/benchmark_train/gr1/
├── metas/ # 文本描述文件
├── videos/ # 视频文件
└── t5_xxl/ # 预计算的文本嵌入
数据预处理
- 下载原始数据集
- 提取视频帧并统一分辨率
- 使用T5-XXL模型预计算文本嵌入:
python -m scripts.get_t5_embeddings_from_groot_dataset \
--dataset_path datasets/benchmark_train/gr1
模型后训练
2B模型训练
执行以下命令启动2B模型的训练:
EXP=predict2_video2world_training_2b_groot_gr1_480
torchrun --nproc_per_node=8 --master_port=12341 \
-m scripts.train \
--config=cosmos_predict2/configs/base/config.py \
--experiment=${EXP}
14B模型训练
对于更大的14B模型,需要多节点训练:
EXP=predict2_video2world_training_14b_groot_gr1_480
NVTE_FUSED_ATTN=0 torchrun --nproc_per_node=8 --nnodes=4 \
--rdzv_id 123 --rdzv_backend c10d \
-m scripts.train \
--config=cosmos_predict2/configs/base/config.py \
--experiment=${EXP}
训练监控
训练过程中,模型检查点会保存在以下目录结构:
checkpoints/posttraining/video2world/2b_groot_gr1_480/
├── checkpoints/
│ ├── model/ # 模型参数
│ ├── optim/ # 优化器状态
│ └── trainer/ # 训练状态
└── latest_checkpoint.txt
模型推理
基础推理示例
使用训练好的模型生成视频:
torchrun --nproc_per_node=8 --master_port=12341 \
-m examples.video2world_gr00t \
--model_size 14B \
--gr00t_variant gr1 \
--prompt "机器人操作描述文本" \
--input_path 输入图片路径.png \
--save_path 输出视频路径.mp4
批量推理
对于大规模评估,可以使用批量处理模式:
- 准备输入JSON文件
python -m scripts.prepare_batch_input_json \
--dataset_path 数据集路径 \
--output_path batch_input.json
- 执行批量推理
python -m examples.video2world_gr00t \
--batch_input_json batch_input.json \
--disable_guardrail
质量优化技巧
使用拒绝采样(rejection sampling)提升生成质量:
torchrun --nproc_per_node=8 \
-m examples.video2world_bestofn \
--num_generations 4 \ # 生成4个候选视频
--save_path 输出目录
应用场景
Video2World模型特别适用于以下场景:
- 机器人操作构建与训练
- 工业自动化流程预演
- 虚拟环境中的物体交互构建
- 机器人学习算法的训练数据生成
性能优化建议
- 对于14B模型,禁用融合注意力(NVTE_FUSED_ATTN=0)可提高稳定性
- 使用混合精度训练减少显存占用
- 合理设置视频分辨率和帧数以平衡质量与性能
- 多节点训练时确保网络带宽充足
常见问题解决
- 依赖冲突:检查并调整h11和httpcore的版本
- 显存不足:减小batch size或降低分辨率
- 视频质量不佳:尝试拒绝采样或调整温度参数
- 训练不稳定:检查学习率设置和数据分布
通过本文介绍的流程,开发者可以充分利用Cosmos-Predict2项目的Video2World模型,实现高质量的机器人操作视频生成,为机器人学习和构建提供强大的工具支持。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
469

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
519

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
181
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60