推荐使用:DGN——图卷积强化学习框架
2024-05-21 02:27:38作者:范靓好Udolf
项目介绍
DGN(图卷积强化学习)是一种创新的多智能体强化学习算法,由北京大学的研究人员开发。它的核心思想是将多智能体环境建模为一个图,每个智能体作为图中的节点,而节点的特征表示为智能体对本地观测的编码。通过引入注意力机制作为卷积核,DGN可以在图上执行卷积操作,提取节点间的关系表示,并从邻近节点传播特征,类似于传统的卷积神经网络(CNN)。这种模型利用逐渐扩大的感受野来学习协同策略,并对关系表示进行时间上的正则化,以帮助智能体发展一致的协作政策。
项目技术分析
DGN的核心在于图卷积和注意力机制的结合。所有智能体共享权重,这解决了非站定性问题并确保了关系提取的高效性。由于智能体通过关系内核基于其观察结果来提取它们之间的关系,如果编码器不同(智能体以不同的方式编码观察),关系内核很难学习到它们的关系,因为图是高度动态的。共享参数的策略使DGN能够自然地避免这个问题,并作为一个整体对所有目标进行优化。
此外,DGN的实现简单且高效,已在多个基准测试场景中超越了许多最先进的算法。
项目及技术应用场景
DGN的适用范围广泛,已经在以下领域展现出潜力:
- 交通信号控制:宾夕法尼亚州立大学的研究人员将其应用于CoLight: 学习交通信号控制的网络级合作。
- 连接自动驾驶车辆:普渡大学的研究者使用它在A DRL-based Multiagent Cooperative Control Framework for CAV Networks: a Graphic Convolution Q Network中构建了联合控制框架。
- 自动驾驶:麦吉尔大学的研究团队在Multi-agent Graph Reinforcement Learning for Connected Automated Driving中应用了这一技术。
我们期待DGN能在更多实际应用中发挥重要作用。
项目特点
- 灵活的环境适应性:DGN能适应动态环境,无论每个智能体的邻居数量如何变化,或图如何连接(断开或完全连接)。
- 参数共享:智能体重用同一组权重,避免了非站定性问题,提高了训练效率。
- 强大的关系表示:通过图卷积和注意力机制,DGN能捕捉复杂的节点间关系。
- 优秀的表现:在多种多智能体任务中,DGN的性能优于现有方法。
若您使用DGN,请引用相关论文:
@inproceedings{jiang2020graph,
title={Graph Convolutional Reinforcement Learning},
author={Jiang, Jiechuan and Dun, Chen and Huang, Tiejun and Lu, Zongqing},
booktitle={ICLR},
year={2020}
}
立即尝试DGN,开启您的图卷积强化学习之旅吧!
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++026Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
943
556

React Native鸿蒙化仓库
C++
196
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
361
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71