《探索Django AdminPlus:简化管理界面自定义视图的利器》
在现代Web开发中,Django框架以其强大的功能和高度的灵活性赢得了开发者们的青睐。其中,Django的Admin界面为开发者提供了一个管理数据库模型的便捷工具。然而,当需要添加不依赖于模型的自定义管理视图时,开发者可能会遇到一些限制。这时,Django AdminPlus开源项目就能派上用场。本文将详细介绍如何安装和使用Django AdminPlus,帮助开发者轻松扩展Django Admin的功能。
安装前准备
在开始安装Django AdminPlus之前,确保你的开发环境满足以下要求:
- 操作系统:Django支持主流操作系统,如Linux、macOS和Windows。
- Python版本:确保你的系统中安装了Python 3.6以上版本。
- Django版本:Django AdminPlus与Django 2.x和3.x版本兼容。
- 依赖项:安装Django AdminPlus之前,确保已经安装了Django。
安装步骤
下面是安装Django AdminPlus的详细步骤:
-
下载开源项目资源
使用pip命令从PyPI安装Django AdminPlus:
pip install django-adminplus
或者直接从GitHub克隆项目:
git clone https://github.com/jsocol/django-adminplus.git
-
安装过程详解
将克隆的项目添加到你的Django项目的
INSTALLED_APPS
中,并替换原有的django.contrib.admin
配置:INSTALLED_APPS = ( 'django.contrib.admin.apps.SimpleAdminConfig', # ... 'adminplus', # ... )
接着,在项目的
urls.py
文件中替换原有的django.contrib.admin.site
实例:from django.contrib import admin from adminplus.sites import AdminSitePlus admin.site = AdminSitePlus() admin.autodiscover() urlpatterns = [ # ... (r'^admin', include(admin.site.urls)), # ... ]
完成这些步骤后,你就可以使用AdminPlus了。
-
常见问题及解决
- 如果在安装过程中遇到权限问题,确保使用具有适当权限的用户执行pip命令。
- 如果出现依赖冲突,尝试升级相关依赖项到最新版本。
基本使用方法
安装完毕后,你可以开始使用Django AdminPlus添加自定义视图。
-
加载开源项目
确保在Django项目的设置中正确配置了AdminPlus。
-
简单示例演示
创建一个自定义视图函数,并使用
admin.site.register_view
将其注册到Admin界面:from django.contrib import admin def my_view(request, *args, **kwargs): # 这里是你的视图逻辑 pass admin.site.register_view('somepath', view=my_view)
现在,
my_view
将在Admin界面的Custom Views部分中可见,并且可以通过admin/somepath
访问。 -
参数设置说明
register_view
函数接受一些可选参数,如name
用于设置显示名称,urlname
用于指定URL名称,以及visible
用于控制视图是否在Admin界面中显示。
结论
通过以上步骤,你已经学会了如何安装和使用Django AdminPlus。这个开源项目为Django的Admin界面提供了一个简洁而强大的扩展方案,使得添加自定义视图变得异常简单。接下来,你可以尝试在自己的项目中实践这些方法,并探索更多AdminPlus的功能。
对于进一步的学习和探索,可以访问项目地址查看文档和源代码。不断实践和尝试,将使你更好地掌握Django AdminPlus的使用技巧。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









