Apache Velocity 项目教程
2024-08-07 07:05:33作者:姚月梅Lane
项目介绍
Apache Velocity 是一个基于 Java 的模板引擎,它提供了一种简单而强大的方式来生成动态内容。Velocity 项目由 Apache 软件基金会维护,广泛应用于 Web 开发、邮件模板生成等领域。
项目快速启动
要快速启动 Apache Velocity 项目,请按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/apache/velocity-site.git -
导入项目到 IDE: 将克隆下来的项目导入到你喜欢的 Java IDE 中,如 IntelliJ IDEA 或 Eclipse。
-
编写第一个 Velocity 模板: 在
src/main/resources目录下创建一个名为example.vm的文件,内容如下:Hello, ${name}! Welcome to Velocity. -
编写 Java 代码: 在
src/main/java目录下创建一个名为Example.java的文件,内容如下:import org.apache.velocity.Template; import org.apache.velocity.VelocityContext; import org.apache.velocity.app.VelocityEngine; import java.io.StringWriter; public class Example { public static void main(String[] args) { VelocityEngine ve = new VelocityEngine(); ve.init(); Template t = ve.getTemplate("example.vm"); VelocityContext context = new VelocityContext(); context.put("name", "World"); StringWriter writer = new StringWriter(); t.merge(context, writer); System.out.println(writer.toString()); } } -
运行项目: 运行
Example.java文件,你将看到输出:Hello, World! Welcome to Velocity.
应用案例和最佳实践
应用案例
- Web 开发:Velocity 可以与 Servlet 结合使用,生成动态网页内容。
- 邮件模板:Velocity 可以用于生成邮件模板,动态插入用户数据。
- 代码生成:Velocity 可以用于生成代码模板,提高开发效率。
最佳实践
- 模板分离:将业务逻辑与视图逻辑分离,保持模板简洁。
- 上下文管理:合理管理 VelocityContext,避免不必要的变量污染。
- 缓存机制:对于频繁使用的模板,可以考虑使用缓存机制提高性能。
典型生态项目
- Velocity Tools:提供了一些常用的工具类,帮助开发者更方便地使用 Velocity。
- Velocity View:提供了与 Servlet 容器集成的视图层解决方案。
- Velocity Struts:提供了与 Struts 框架集成的解决方案。
通过以上内容,你可以快速了解和上手 Apache Velocity 项目,并掌握其基本使用方法和最佳实践。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioAgent零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理TSX0109
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
430
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
346
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
688
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
77
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
670