FastHX 使用教程
2025-04-18 06:23:33作者:裴麒琰
1. 项目介绍
FastHX 是一个为 FastAPI 提供服务端渲染的库,它支持与 HTMX 框架的无缝集成,同时也支持其他模板引擎如 jinja2 或 dominate。FastHX 通过装饰器语法简化了 FastAPI 路由的 HTML 响应渲染过程,允许开发者专注于业务逻辑,而将渲染层的处理交给 FastHX。
2. 项目快速启动
首先,确保你已经安装了 Python 环境。然后,通过以下命令安装 FastHX:
pip install fasthx
若你需要使用 HTMX 集成,请安装:
pip install fasthx[htmy]
以下是一个简单的 FastAPI 应用,使用 FastHX 进行服务端渲染的示例:
from fastapi import FastAPI
from pydantic import BaseModel
from fasthx import HTMY
# 定义数据模型
class User(BaseModel):
name: str
birthday: date
# 创建 FastAPI 应用
app = FastAPI()
# 创建 FastHX HTMY 实例
htmy = HTMY()
# 创建一个路由,使用 HTMY 渲染
@app.get("/users")
@htmy.hx(UserList)
def get_users():
return [
User(name="John", birthday=date(1940, 10, 9)),
User(name="Paul", birthday=date(1942, 6, 18)),
User(name="George", birthday=date(1943, 2, 25)),
User(name="Ringo", birthday=date(1940, 7, 7)),
]
# 运行应用
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
确保你的 FastAPI 应用运行在本地开发服务器上,然后访问 http://localhost:8000/users,你应该能看到渲染后的用户列表。
3. 应用案例和最佳实践
使用 jinja2 模板引擎
如果你偏好使用 jinja2,你可以按照以下步骤集成:
-
安装 FastHX 和 jinja2:
pip install fasthx[jinja] -
创建一个 FastAPI 应用,并使用
FastHX的Jinja实例:from fastapi import FastAPI from fastapi.templating import Jinja2Templates from fasthx import Jinja app = FastAPI() jinja = Jinja(Jinja2Templates(directory="templates")) -
在
templates目录下创建你的 HTML 模板文件。 -
使用
Jinja实例的装饰器来创建路由:@app.get("/") @jinja.page("index.html") def index(): return {"message": "Hello, World!"}
错误处理
FastHX 允许你定义错误处理的组件,当路由中抛出异常时,可以捕获并渲染特定的错误页面。
4. 典型生态项目
FastHX 作为一个 FastAPI 的渲染工具,可以与 FastAPI 生态中的其他项目配合使用,例如:
- 使用
sqlalchemy进行数据持久化。 - 使用
passlib进行用户认证。 - 使用
pytest和pytest-fastapi进行测试。
以上是 FastHX 的基础使用教程,你可以根据具体的项目需求,扩展和定制 FastHX 的使用方式。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
410
3.16 K
Ascend Extension for PyTorch
Python
227
254
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
264
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868