PyTorch-TensorRT编译中interpolate算子问题的分析与解决
问题背景
在使用PyTorch-TensorRT进行模型编译时,当模型包含interpolate(插值)操作时,可能会遇到"TypeError: torch.int64 is not supported by tensorrt"的错误。这个问题特别出现在使用torch.compile配合torch_tensorrt后端时,即使输入数据明确指定为float32类型,系统仍会报出int64类型不支持的异常。
问题根源分析
经过深入调查发现,这个问题源于PyTorch内部对interpolate算子的分解实现。PyTorch在底层会将interpolate操作分解为更基础的算子组合,其中涉及到一些形状计算操作会使用int64类型。虽然用户提供的输入是float32类型,但在算子分解过程中产生的中间变量可能包含int64类型,而TensorRT目前不支持int64数据类型。
技术细节
interpolate算子在PyTorch中的分解实现会执行以下关键步骤:
- 计算输出尺寸:根据scale_factor计算新的输出尺寸,这些尺寸值通常以int64类型存储
- 生成网格:为插值操作生成采样网格,涉及整数索引计算
- 执行插值:实际的插值计算使用float32类型
正是第一步和第二步中的尺寸计算和索引生成导致了int64类型的出现,而TensorRT目前仅支持有限的数据类型集合,不包括int64。
解决方案
最新版本的Torch-TensorRT已经通过引入truncate_long_and_double
编译选项解决了这个问题。这个选项会自动处理int64类型的转换,使其能够与TensorRT兼容。建议用户升级到最新版本的Torch-TensorRT以获得此功能。
对于暂时无法升级的用户,可以考虑以下替代方案:
- 使用显式的输出尺寸而非scale_factor参数
- 实现自定义的插值层,避免内部使用int64类型
- 将模型分解,仅对不包含interpolate的部分使用TensorRT加速
最佳实践
在使用PyTorch-TensorRT进行模型编译时,建议:
- 始终使用最新稳定版本的Torch-TensorRT
- 对于包含复杂操作(如interpolate)的模型,逐步验证各部分的兼容性
- 关注PyTorch和TensorRT的版本兼容性矩阵
- 在遇到类似问题时,检查算子分解后的中间表示
总结
PyTorch-TensorRT在编译包含interpolate算子的模型时出现的int64类型不支持问题,本质上是框架间数据类型支持差异导致的。通过升级到最新版本或采用适当的替代方案,开发者可以顺利解决这一问题,充分发挥TensorRT的加速优势。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









