ISLR-python项目解析:K近邻算法(KNN)实战指南
2025-06-19 03:17:00作者:裴锟轩Denise
前言
K近邻算法(K-Nearest Neighbors, KNN)是机器学习中最简单直观的分类算法之一。本文将基于ISLR-python项目中的实验内容,深入讲解KNN算法的原理、实现方法以及在金融数据集上的应用实践。
KNN算法基础
KNN是一种基于实例的学习算法,其核心思想可以概括为"物以类聚"。对于一个待分类的样本,算法会找出训练集中与之最相似的K个样本,然后根据这K个样本的类别投票决定待分类样本的类别。
算法特点
- 非参数方法:不对数据分布做任何假设
- 惰性学习:训练阶段仅存储数据,计算推迟到预测阶段
- 距离度量:通常使用欧氏距离,也可用曼哈顿距离等
实验准备
首先导入必要的Python库:
import pandas as pd
import numpy as np
from sklearn import neighbors
from sklearn.metrics import confusion_matrix, classification_report
from sklearn import preprocessing
案例一:股票市场方向预测
数据集介绍
我们使用Smarket数据集,包含2001-2005年间S&P 500指数的以下信息:
- Lag1-Lag5:前5个交易日的收益率
- Volume:前一天的交易量(十亿股)
- Today:当日收益率
- Direction:市场方向(Up/Down)
df = pd.read_csv('Smarket.csv', usecols=range(1,10), index_col=0, parse_dates=True)
df.head()
数据划分
将数据按时间划分为训练集(2001-2004)和测试集(2005):
X_train = df[:'2004'][['Lag1','Lag2']]
y_train = df[:'2004']['Direction']
X_test = df['2005':][['Lag1','Lag2']]
y_test = df['2005':]['Direction']
KNN模型构建与评估
使用K=1构建模型:
knn = neighbors.KNeighborsClassifier(n_neighbors=1)
pred = knn.fit(X_train, y_train).predict(X_test)
评估模型性能:
print(confusion_matrix(y_test, pred).T)
print(classification_report(y_test, pred, digits=3))
尝试K=3改进模型:
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
pred = knn.fit(X_train, y_train).predict(X_test)
print(confusion_matrix(y_test, pred).T)
print(classification_report(y_test, pred, digits=3))
结果分析
实验表明,在这个数据集上KNN表现不佳,准确率仅略高于随机猜测。这说明市场方向预测可能需要更复杂的模型或更多特征。
案例二:保险购买预测
数据集介绍
Caravan数据集包含5,822个人的85个人口统计学特征,目标是预测是否会购买保险。只有6%的人购买了保险,数据存在严重不平衡。
df2 = pd.read_csv('Caravan.csv')
df2["Purchase"].value_counts()
数据标准化
KNN对特征尺度敏感,必须进行标准化处理:
y = df2.Purchase
X = df2.drop('Purchase', axis=1).astype('float64')
X_scaled = preprocessing.scale(X)
数据划分
前1000个样本作为测试集,其余作为训练集:
X_train = X_scaled[1000:,:]
y_train = y[1000:]
X_test = X_scaled[:1000,:]
y_test = y[:1000]
KNN模型构建与评估
使用K=1构建模型:
knn = neighbors.KNeighborsClassifier(n_neighbors=1)
pred = knn.fit(X_train, y_train).predict(X_test)
print(classification_report(y_test, pred, digits=3))
查看混淆矩阵:
print(confusion_matrix(y_test, pred).T)
结果解读
虽然整体准确率不高,但KNN成功识别出了部分潜在客户,预测购买的人群中实际购买比例(11.7%)是随机猜测(6%)的近两倍。这表明KNN在这个不平衡数据集上发现了有意义的模式。
KNN实践建议
- 特征标准化:KNN对特征尺度敏感,必须进行标准化
- K值选择:通过交叉验证选择最优K值,避免过拟合(K太小)或欠拟合(K太大)
- 距离度量:根据数据特点选择合适的距离度量方式
- 类别不平衡:考虑使用加权投票或调整分类阈值
- 降维处理:高维数据可先进行降维提高效率
总结
通过ISLR-python项目中的两个案例,我们实践了KNN算法在金融领域的应用。虽然KNN简单直观,但其性能高度依赖于数据特点和参数选择。在实际应用中,需要结合业务场景和数据特性进行适当的调整和优化。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30