ISLR-python项目解析:K近邻算法(KNN)实战指南
2025-06-19 03:17:00作者:裴锟轩Denise
前言
K近邻算法(K-Nearest Neighbors, KNN)是机器学习中最简单直观的分类算法之一。本文将基于ISLR-python项目中的实验内容,深入讲解KNN算法的原理、实现方法以及在金融数据集上的应用实践。
KNN算法基础
KNN是一种基于实例的学习算法,其核心思想可以概括为"物以类聚"。对于一个待分类的样本,算法会找出训练集中与之最相似的K个样本,然后根据这K个样本的类别投票决定待分类样本的类别。
算法特点
- 非参数方法:不对数据分布做任何假设
- 惰性学习:训练阶段仅存储数据,计算推迟到预测阶段
- 距离度量:通常使用欧氏距离,也可用曼哈顿距离等
实验准备
首先导入必要的Python库:
import pandas as pd
import numpy as np
from sklearn import neighbors
from sklearn.metrics import confusion_matrix, classification_report
from sklearn import preprocessing
案例一:股票市场方向预测
数据集介绍
我们使用Smarket数据集,包含2001-2005年间S&P 500指数的以下信息:
- Lag1-Lag5:前5个交易日的收益率
- Volume:前一天的交易量(十亿股)
- Today:当日收益率
- Direction:市场方向(Up/Down)
df = pd.read_csv('Smarket.csv', usecols=range(1,10), index_col=0, parse_dates=True)
df.head()
数据划分
将数据按时间划分为训练集(2001-2004)和测试集(2005):
X_train = df[:'2004'][['Lag1','Lag2']]
y_train = df[:'2004']['Direction']
X_test = df['2005':][['Lag1','Lag2']]
y_test = df['2005':]['Direction']
KNN模型构建与评估
使用K=1构建模型:
knn = neighbors.KNeighborsClassifier(n_neighbors=1)
pred = knn.fit(X_train, y_train).predict(X_test)
评估模型性能:
print(confusion_matrix(y_test, pred).T)
print(classification_report(y_test, pred, digits=3))
尝试K=3改进模型:
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
pred = knn.fit(X_train, y_train).predict(X_test)
print(confusion_matrix(y_test, pred).T)
print(classification_report(y_test, pred, digits=3))
结果分析
实验表明,在这个数据集上KNN表现不佳,准确率仅略高于随机猜测。这说明市场方向预测可能需要更复杂的模型或更多特征。
案例二:保险购买预测
数据集介绍
Caravan数据集包含5,822个人的85个人口统计学特征,目标是预测是否会购买保险。只有6%的人购买了保险,数据存在严重不平衡。
df2 = pd.read_csv('Caravan.csv')
df2["Purchase"].value_counts()
数据标准化
KNN对特征尺度敏感,必须进行标准化处理:
y = df2.Purchase
X = df2.drop('Purchase', axis=1).astype('float64')
X_scaled = preprocessing.scale(X)
数据划分
前1000个样本作为测试集,其余作为训练集:
X_train = X_scaled[1000:,:]
y_train = y[1000:]
X_test = X_scaled[:1000,:]
y_test = y[:1000]
KNN模型构建与评估
使用K=1构建模型:
knn = neighbors.KNeighborsClassifier(n_neighbors=1)
pred = knn.fit(X_train, y_train).predict(X_test)
print(classification_report(y_test, pred, digits=3))
查看混淆矩阵:
print(confusion_matrix(y_test, pred).T)
结果解读
虽然整体准确率不高,但KNN成功识别出了部分潜在客户,预测购买的人群中实际购买比例(11.7%)是随机猜测(6%)的近两倍。这表明KNN在这个不平衡数据集上发现了有意义的模式。
KNN实践建议
- 特征标准化:KNN对特征尺度敏感,必须进行标准化
- K值选择:通过交叉验证选择最优K值,避免过拟合(K太小)或欠拟合(K太大)
- 距离度量:根据数据特点选择合适的距离度量方式
- 类别不平衡:考虑使用加权投票或调整分类阈值
- 降维处理:高维数据可先进行降维提高效率
总结
通过ISLR-python项目中的两个案例,我们实践了KNN算法在金融领域的应用。虽然KNN简单直观,但其性能高度依赖于数据特点和参数选择。在实际应用中,需要结合业务场景和数据特性进行适当的调整和优化。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
268
305
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
74
React Native鸿蒙化仓库
JavaScript
283
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
419
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
453
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119