CVXPY中QP问题求解差异分析:CLARABEL与OSQP的表现对比
2025-06-06 16:23:10作者:邵娇湘
问题背景
在使用CVXPY求解二次规划(QP)问题时,开发者可能会遇到不同求解器返回不同解的情况。本文通过一个实际案例,分析当使用CLARABEL和OSQP两种求解器时,为何会出现解不一致的现象,以及如何正确理解和处理这类问题。
案例展示
考虑以下优化问题:
m = [10_000, 10_000, 10_000, 10_000]
s = [0.4, 0.6, 0.9, 0.1]
weights = [20_000, 20_000, 20_000, 20_000]
dt = 15.0/60
n = len(m)
x = cp.Variable(n)
total_m = 30_000
constraints = [
0 <= x,
x <= m,
cp.sum(x) == total_m,
]
objective = cp.sum_squares(s + x * dt / weights - 0.5)
当分别使用CLARABEL和OSQP求解器时,得到了不同的结果:
- CLARABEL找到的解在边界上(x = [10000., 10000., 0., 10000.])
- OSQP找到的解在内部(x ≈ [7510., 7490., 7460., 7540.])
问题根源分析
这种差异的根本原因在于问题的数值缩放比例不当。具体来说:
-
二次项系数过小:表达式中的
(dt/weights)**2约为1e-10量级,导致QP问题中的二次项系数几乎可以忽略不计。 -
求解器处理方式不同:
- CLARABEL作为锥优化求解器,直接处理原始问题的仿射形式,最小系数约为1e-5量级
- OSQP作为纯QP求解器,处理的是转换后的QP形式,二次项系数过小导致数值精度问题
-
目标函数敏感性:实际上,目标函数值主要受线性项
s - 0.5主导,二次项贡献极小
解决方案
针对这类数值缩放问题,推荐以下解决方法:
-
变量重缩放:将变量
m、total_m、weights和x缩小约1000倍,使数值范围更合理 -
问题重构:考虑将目标函数中的小系数项提取出来,单独处理
-
求解器选择:对于包含极小系数的QP问题,优先考虑使用锥优化求解器(如CLARABEL)
最佳实践建议
-
在建模时,应始终保持变量的合理数值范围(如1-1000之间)
-
对于包含不同数量级系数的问题,考虑进行预处理和缩放
-
当发现不同求解器结果不一致时,首先检查问题的数值特性而非直接怀疑求解器
-
理解不同求解器的工作原理和适用场景,选择合适的工具
通过正确的问题缩放和求解器选择,可以确保获得稳定可靠的优化结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217