CVXPY中QP问题求解差异分析:CLARABEL与OSQP的表现对比
2025-06-06 23:58:15作者:邵娇湘
问题背景
在使用CVXPY求解二次规划(QP)问题时,开发者可能会遇到不同求解器返回不同解的情况。本文通过一个实际案例,分析当使用CLARABEL和OSQP两种求解器时,为何会出现解不一致的现象,以及如何正确理解和处理这类问题。
案例展示
考虑以下优化问题:
m = [10_000, 10_000, 10_000, 10_000]
s = [0.4, 0.6, 0.9, 0.1]
weights = [20_000, 20_000, 20_000, 20_000]
dt = 15.0/60
n = len(m)
x = cp.Variable(n)
total_m = 30_000
constraints = [
0 <= x,
x <= m,
cp.sum(x) == total_m,
]
objective = cp.sum_squares(s + x * dt / weights - 0.5)
当分别使用CLARABEL和OSQP求解器时,得到了不同的结果:
- CLARABEL找到的解在边界上(x = [10000., 10000., 0., 10000.])
- OSQP找到的解在内部(x ≈ [7510., 7490., 7460., 7540.])
问题根源分析
这种差异的根本原因在于问题的数值缩放比例不当。具体来说:
-
二次项系数过小:表达式中的
(dt/weights)**2约为1e-10量级,导致QP问题中的二次项系数几乎可以忽略不计。 -
求解器处理方式不同:
- CLARABEL作为锥优化求解器,直接处理原始问题的仿射形式,最小系数约为1e-5量级
- OSQP作为纯QP求解器,处理的是转换后的QP形式,二次项系数过小导致数值精度问题
-
目标函数敏感性:实际上,目标函数值主要受线性项
s - 0.5主导,二次项贡献极小
解决方案
针对这类数值缩放问题,推荐以下解决方法:
-
变量重缩放:将变量
m、total_m、weights和x缩小约1000倍,使数值范围更合理 -
问题重构:考虑将目标函数中的小系数项提取出来,单独处理
-
求解器选择:对于包含极小系数的QP问题,优先考虑使用锥优化求解器(如CLARABEL)
最佳实践建议
-
在建模时,应始终保持变量的合理数值范围(如1-1000之间)
-
对于包含不同数量级系数的问题,考虑进行预处理和缩放
-
当发现不同求解器结果不一致时,首先检查问题的数值特性而非直接怀疑求解器
-
理解不同求解器的工作原理和适用场景,选择合适的工具
通过正确的问题缩放和求解器选择,可以确保获得稳定可靠的优化结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
353
420
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
142
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759