CVXPY中QP问题求解差异分析:CLARABEL与OSQP的表现对比
2025-06-06 10:00:23作者:邵娇湘
问题背景
在使用CVXPY求解二次规划(QP)问题时,开发者可能会遇到不同求解器返回不同解的情况。本文通过一个实际案例,分析当使用CLARABEL和OSQP两种求解器时,为何会出现解不一致的现象,以及如何正确理解和处理这类问题。
案例展示
考虑以下优化问题:
m = [10_000, 10_000, 10_000, 10_000]
s = [0.4, 0.6, 0.9, 0.1]
weights = [20_000, 20_000, 20_000, 20_000]
dt = 15.0/60
n = len(m)
x = cp.Variable(n)
total_m = 30_000
constraints = [
0 <= x,
x <= m,
cp.sum(x) == total_m,
]
objective = cp.sum_squares(s + x * dt / weights - 0.5)
当分别使用CLARABEL和OSQP求解器时,得到了不同的结果:
- CLARABEL找到的解在边界上(x = [10000., 10000., 0., 10000.])
- OSQP找到的解在内部(x ≈ [7510., 7490., 7460., 7540.])
问题根源分析
这种差异的根本原因在于问题的数值缩放比例不当。具体来说:
-
二次项系数过小:表达式中的
(dt/weights)**2
约为1e-10量级,导致QP问题中的二次项系数几乎可以忽略不计。 -
求解器处理方式不同:
- CLARABEL作为锥优化求解器,直接处理原始问题的仿射形式,最小系数约为1e-5量级
- OSQP作为纯QP求解器,处理的是转换后的QP形式,二次项系数过小导致数值精度问题
-
目标函数敏感性:实际上,目标函数值主要受线性项
s - 0.5
主导,二次项贡献极小
解决方案
针对这类数值缩放问题,推荐以下解决方法:
-
变量重缩放:将变量
m
、total_m
、weights
和x
缩小约1000倍,使数值范围更合理 -
问题重构:考虑将目标函数中的小系数项提取出来,单独处理
-
求解器选择:对于包含极小系数的QP问题,优先考虑使用锥优化求解器(如CLARABEL)
最佳实践建议
-
在建模时,应始终保持变量的合理数值范围(如1-1000之间)
-
对于包含不同数量级系数的问题,考虑进行预处理和缩放
-
当发现不同求解器结果不一致时,首先检查问题的数值特性而非直接怀疑求解器
-
理解不同求解器的工作原理和适用场景,选择合适的工具
通过正确的问题缩放和求解器选择,可以确保获得稳定可靠的优化结果。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0125AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.28 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
72

暂无简介
Dart
527
116

仓颉编程语言运行时与标准库。
Cangjie
122
91

React Native鸿蒙化仓库
JavaScript
215
289

Ascend Extension for PyTorch
Python
70
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
567
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
400