Google Generative AI Python SDK 中的工具调用与流式响应处理技巧
在使用 Google Generative AI Python SDK 进行工具调用时,开发者可能会遇到一些技术挑战。本文将深入探讨如何正确处理工具调用场景下的流式响应,以及如何避免常见的错误。
工具调用的基本配置
在 Gemini 模型中实现工具调用功能时,首先需要正确配置模型参数。关键点在于启用自动函数调用功能:
model = genai.GenerativeModel(
"gemini-1.5-flash-002",
tools=[set_brightness],
)
chat = model.start_chat(enable_automatic_function_calling=True)
这里需要注意,enable_automatic_function_calling=True 参数是必须的,否则模型不会自动执行工具函数。
工具函数的定义规范
定义工具函数时,需要遵循特定格式:
def set_brightness(value: float) -> None:
"""Controls the brightness of all house lights. `value` is a `float` between 0 (off) and 1 (max)."""
print("Brightness changed:", value)
函数文档字符串非常重要,它会被模型用来理解函数的用途和参数要求。参数类型注解也是必要的,这有助于模型正确生成调用参数。
流式响应处理的高级技巧
当使用流式响应时,开发者需要特别注意处理不同类型的响应部分:
for chunk in stream:
for part in chunk.parts:
if hasattr(part, 'text'):
print(part.text, end="", flush=True)
elif hasattr(part, 'function_call'):
# 处理函数调用逻辑
handle_function_call(part.function_call)
这种处理方式比直接访问 chunk.text 更可靠,因为它能够正确处理各种类型的响应部分,包括文本和函数调用。
常见错误与解决方案
开发者在使用过程中可能会遇到以下问题:
-
属性错误:早期版本中存在的
whichOneof拼写错误已在最新版本中修复为WhichOneof。 -
流式响应处理不当:直接访问
chunk.text可能无法正确处理包含函数调用的响应,应该改为遍历chunk.parts并分别处理每种类型。 -
自动调用未启用:忘记设置
enable_automatic_function_calling=True会导致模型只生成函数调用建议而不实际执行。
最佳实践建议
-
始终检查 SDK 版本,确保使用的是最新版本以避免已知问题。
-
在处理流式响应时,实现完整的部分类型检查逻辑。
-
为工具函数编写清晰完整的文档字符串,包括参数说明和取值范围。
-
考虑添加错误处理逻辑,应对模型可能生成的无效函数调用。
通过遵循这些指导原则,开发者可以更有效地利用 Google Generative AI Python SDK 的工具调用功能,构建更强大的 AI 应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00