Logic-RL项目中的训练配置与课程学习实践
2025-07-02 13:30:02作者:傅爽业Veleda
Logic-RL是一个基于强化学习的逻辑推理训练框架,该项目通过课程学习的方式逐步提升模型在逻辑推理任务上的表现。本文将深入分析该项目的训练配置细节,特别是如何通过调整参数来复现论文中的实验结果。
核心训练配置解析
在Logic-RL项目中,curriculum.sh脚本是训练过程的核心控制文件。根据项目维护者的确认,要实现论文中的训练效果,需要对该脚本进行两处关键修改:
- 将temperature参数设置为0.7
- 增加训练epoch数量至6个左右
temperature参数控制着模型生成时的随机性程度,设置为0.7可以在生成多样性和准确性之间取得良好平衡。而增加epoch数量则是为了达到论文中提到的3600步训练效果。
参数调整实践
在实际应用中,训练配置需要根据具体硬件条件进行调整。一个典型的配置示例如下:
actor_rollout_ref.rollout.temperature=0.7
data.train_batch_size=8
data.val_batch_size=8
actor_rollout_ref.actor.optim.lr=4e-7
actor_rollout_ref.actor.ppo_mini_batch_size=256
actor_rollout_ref.actor.ppo_micro_batch_size=64
trainer.total_epochs=6
值得注意的是,模型规模对训练效果有显著影响。实践表明,7B参数规模的模型比0.5B或3B的模型更容易取得理想效果。
数据准备与课程学习
Logic-RL采用课程学习策略,建议将不同难度级别(3ppl-7ppl)的训练数据合并处理。合并方法如下:
import pandas as pd
import os
base_path = 'Logic-RL/data/kk/instruct/'
output_path = os.path.join(base_path, 'all-ppl', 'all_train.parquet')
merged_df = pd.DataFrame()
for ppl in range(3, 8):
file_path = os.path.join(base_path, f'{ppl}ppl', 'train.parquet')
if os.path.exists(file_path):
df = pd.read_parquet(file_path)
merged_df = pd.concat([merged_df, df], ignore_index=True)
merged_df.to_parquet(output_path, index=False)
这种合并方式可以让模型在训练过程中自然地接触到不同难度的样本,实现渐进式学习。
训练效果验证
通过上述配置调整,实验结果表明可以较好地复现论文中的效果。关键指标包括:
- 训练稳定性
- 逻辑推理准确率提升
- 模型生成质量改善
训练过程中建议监控这些指标,确保模型按预期方向学习。
总结
Logic-RL项目通过精心设计的课程学习策略和参数配置,有效提升了模型在逻辑推理任务上的表现。实践表明,合理的参数调整和数据处理是复现论文结果的关键。对于研究者而言,理解这些配置背后的原理比简单复制参数更为重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758