Logic-RL项目中的训练配置与课程学习实践
2025-07-02 13:30:02作者:傅爽业Veleda
Logic-RL是一个基于强化学习的逻辑推理训练框架,该项目通过课程学习的方式逐步提升模型在逻辑推理任务上的表现。本文将深入分析该项目的训练配置细节,特别是如何通过调整参数来复现论文中的实验结果。
核心训练配置解析
在Logic-RL项目中,curriculum.sh脚本是训练过程的核心控制文件。根据项目维护者的确认,要实现论文中的训练效果,需要对该脚本进行两处关键修改:
- 将temperature参数设置为0.7
- 增加训练epoch数量至6个左右
temperature参数控制着模型生成时的随机性程度,设置为0.7可以在生成多样性和准确性之间取得良好平衡。而增加epoch数量则是为了达到论文中提到的3600步训练效果。
参数调整实践
在实际应用中,训练配置需要根据具体硬件条件进行调整。一个典型的配置示例如下:
actor_rollout_ref.rollout.temperature=0.7
data.train_batch_size=8
data.val_batch_size=8
actor_rollout_ref.actor.optim.lr=4e-7
actor_rollout_ref.actor.ppo_mini_batch_size=256
actor_rollout_ref.actor.ppo_micro_batch_size=64
trainer.total_epochs=6
值得注意的是,模型规模对训练效果有显著影响。实践表明,7B参数规模的模型比0.5B或3B的模型更容易取得理想效果。
数据准备与课程学习
Logic-RL采用课程学习策略,建议将不同难度级别(3ppl-7ppl)的训练数据合并处理。合并方法如下:
import pandas as pd
import os
base_path = 'Logic-RL/data/kk/instruct/'
output_path = os.path.join(base_path, 'all-ppl', 'all_train.parquet')
merged_df = pd.DataFrame()
for ppl in range(3, 8):
file_path = os.path.join(base_path, f'{ppl}ppl', 'train.parquet')
if os.path.exists(file_path):
df = pd.read_parquet(file_path)
merged_df = pd.concat([merged_df, df], ignore_index=True)
merged_df.to_parquet(output_path, index=False)
这种合并方式可以让模型在训练过程中自然地接触到不同难度的样本,实现渐进式学习。
训练效果验证
通过上述配置调整,实验结果表明可以较好地复现论文中的效果。关键指标包括:
- 训练稳定性
- 逻辑推理准确率提升
- 模型生成质量改善
训练过程中建议监控这些指标,确保模型按预期方向学习。
总结
Logic-RL项目通过精心设计的课程学习策略和参数配置,有效提升了模型在逻辑推理任务上的表现。实践表明,合理的参数调整和数据处理是复现论文结果的关键。对于研究者而言,理解这些配置背后的原理比简单复制参数更为重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19