Logic-RL项目中的训练配置与课程学习实践
2025-07-02 08:29:16作者:傅爽业Veleda
Logic-RL是一个基于强化学习的逻辑推理训练框架,该项目通过课程学习的方式逐步提升模型在逻辑推理任务上的表现。本文将深入分析该项目的训练配置细节,特别是如何通过调整参数来复现论文中的实验结果。
核心训练配置解析
在Logic-RL项目中,curriculum.sh脚本是训练过程的核心控制文件。根据项目维护者的确认,要实现论文中的训练效果,需要对该脚本进行两处关键修改:
- 将temperature参数设置为0.7
- 增加训练epoch数量至6个左右
temperature参数控制着模型生成时的随机性程度,设置为0.7可以在生成多样性和准确性之间取得良好平衡。而增加epoch数量则是为了达到论文中提到的3600步训练效果。
参数调整实践
在实际应用中,训练配置需要根据具体硬件条件进行调整。一个典型的配置示例如下:
actor_rollout_ref.rollout.temperature=0.7
data.train_batch_size=8
data.val_batch_size=8
actor_rollout_ref.actor.optim.lr=4e-7
actor_rollout_ref.actor.ppo_mini_batch_size=256
actor_rollout_ref.actor.ppo_micro_batch_size=64
trainer.total_epochs=6
值得注意的是,模型规模对训练效果有显著影响。实践表明,7B参数规模的模型比0.5B或3B的模型更容易取得理想效果。
数据准备与课程学习
Logic-RL采用课程学习策略,建议将不同难度级别(3ppl-7ppl)的训练数据合并处理。合并方法如下:
import pandas as pd
import os
base_path = 'Logic-RL/data/kk/instruct/'
output_path = os.path.join(base_path, 'all-ppl', 'all_train.parquet')
merged_df = pd.DataFrame()
for ppl in range(3, 8):
file_path = os.path.join(base_path, f'{ppl}ppl', 'train.parquet')
if os.path.exists(file_path):
df = pd.read_parquet(file_path)
merged_df = pd.concat([merged_df, df], ignore_index=True)
merged_df.to_parquet(output_path, index=False)
这种合并方式可以让模型在训练过程中自然地接触到不同难度的样本,实现渐进式学习。
训练效果验证
通过上述配置调整,实验结果表明可以较好地复现论文中的效果。关键指标包括:
- 训练稳定性
- 逻辑推理准确率提升
- 模型生成质量改善
训练过程中建议监控这些指标,确保模型按预期方向学习。
总结
Logic-RL项目通过精心设计的课程学习策略和参数配置,有效提升了模型在逻辑推理任务上的表现。实践表明,合理的参数调整和数据处理是复现论文结果的关键。对于研究者而言,理解这些配置背后的原理比简单复制参数更为重要。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0285Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
48
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191