HyperDX开源项目发布@hyperdx/common-utils@0.2.0版本解析
HyperDX是一个开源的观测性平台,专注于提供强大的日志、指标和追踪数据分析能力。本次发布的@hyperdx/common-utils@0.2.0版本是该项目的核心工具库更新,带来了多项重要改进和新功能,特别是在指标查询、图表渲染和系统集成方面有显著增强。
核心功能增强
指标查询优化
新版本对数值型聚合查询进行了重要改进,当处理非数值型数据时,现在会使用类型的默认值(如0)而不是返回null。这一改变使得前端展示更加友好,避免了null值带来的显示问题。
在指标查询方面,新增了对SUM指标作为值而非速率查询的支持,这为业务指标分析提供了更多灵活性。同时修复了聚合条件在sum/gauge/histogram指标中的问题,确保了查询结果的准确性。
图表渲染改进
引入了CTE(Common Table Expression)渲染支持,开发者现在可以使用完整的图表配置对象实例来指定CTE。这一特性特别解决了delta事件查询中URI过长的问题,提升了大数据量查询的稳定性。
新增了图表比例计算功能,使得对比分析更加直观。同时改进了renderWith方法的实现逻辑,使其更加简洁高效,并增加了相应的测试用例保证稳定性。
OTEL指标全面支持
新版本显著增强了对OpenTelemetry(OTEL)指标的支持:
- 在源配置设置中新增了对多种OTEL指标类型的支持
- 增加了对OTEL直方图指标表的查询支持
- 新增了摘要和指数直方图指标到源表单和数据库存储
- 实现了直方图查询的百分位计算功能,确保对所有数据点进行准确计算
这些改进使得HyperDX能够更好地与OpenTelemetry生态系统集成,为用户提供更全面的可观测性数据支持。
性能与稳定性提升
- 默认使用ClickHouse库通过POST请求执行查询,提升了大数据量查询的可靠性
- 修复了"Failed to fetch"错误,提高了系统稳定性
- 优化了查询承诺重用机制,避免重复请求
- 改进了元数据getAllKeyValues查询,确保键值作用域限定在表内
- 修复了时间范围过滤在告警中的bug
用户体验改进
- 新增了Kubernetes预设仪表板,简化了容器环境监控设置
- 实现了日志与指标的关联流程,便于问题排查
- 改进了v2 Lucene的键值自动补全功能
- 支持在多隐式字段上进行搜索(BETA功能)
- 修复了显示非OTEL跨度(如ClickHouse OpenTelemetry跨度日志)的问题
技术架构调整
- 全面采用clickhouse-js处理所有客户端查询
- 新增了统一构建流程,支持认证与非认证多阶段构建
- 升级ClickHouse客户端至v1.11.1版本
- 移除了浏览器端的keep_alive设置
- 将rrweb事件获取逻辑移至客户端而非API路由
总结
@hyperdx/common-utils@0.2.0版本的发布标志着HyperDX在指标分析能力和系统稳定性方面迈出了重要一步。特别是对OpenTelemetry指标的全面支持,使得它能够更好地服务于云原生环境下的可观测性需求。性能优化和用户体验改进也使该工具更适合生产环境使用。这些改进为开发者提供了更强大、更可靠的工具来构建和运维现代分布式系统。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-Thinking暂无简介Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00