Kubeflow Pipelines 测试稳定性问题分析与解决方案
2025-06-18 08:22:26作者:齐冠琰
背景介绍
Kubeflow Pipelines 是一个基于 Kubernetes 的开源平台,用于构建和部署机器学习工作流。在持续集成测试过程中,开发团队发现部分测试用例存在不稳定的情况,特别是在 KFP SDK 执行测试工作流中。
问题现象
测试工作流中出现了间歇性失败的情况,具体表现为:
- 相同的测试用例在没有代码变更的情况下,第一次运行失败但重试后通过
- 失败模式呈现随机性,没有固定的失败点
- 错误信息涉及存储系统操作失败
根本原因分析
经过团队深入调查,发现问题主要源于 MinIO 存储系统的磁盘空间耗尽。具体表现为:
- 存储系统瓶颈:测试过程中产生的临时数据和日志不断积累,最终导致 MinIO 存储后端磁盘空间不足
- 资源回收不及时:测试结束后的清理机制不够完善,未能及时释放占用的存储资源
- 并发测试影响:多个测试并行运行时,存储资源消耗加剧
在错误日志中可以看到明确的磁盘空间不足提示:"Error: disk path full",这直接证实了存储空间问题是导致测试不稳定的主要原因。
解决方案
针对这一问题,团队采取了以下改进措施:
- 存储空间优化:对测试过程中产生的临时数据进行压缩和清理优化,减少存储占用
- 增强清理机制:在每个测试用例执行完毕后,强制清理相关临时数据和日志
- 资源监控:在测试流程中加入存储空间监控,提前预警可能的资源耗尽情况
- 测试隔离:改进测试环境的隔离性,防止不同测试用例间的资源干扰
实施效果
经过上述优化后,测试稳定性得到显著提升:
- 测试失败率大幅降低
- 资源使用效率提高
- 测试执行时间更加稳定
- 问题诊断更加容易
经验总结
在基于 Kubernetes 的 CI/CD 系统中,存储资源管理是需要特别关注的方面。特别是在涉及大量临时数据生成的测试场景中,必须建立完善的资源回收机制。同时,测试环境的隔离性和资源监控也是保证测试稳定性的重要因素。
对于类似 Kubeflow Pipelines 这样的复杂系统,建议在测试设计中考虑:
- 资源使用情况的实时监控
- 完善的清理和回收机制
- 测试用例间的资源隔离
- 定期检查系统组件的健康状态
这些措施不仅能提高测试稳定性,也能帮助及早发现系统中的潜在问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137