Unsloth项目中的模型保存机制解析:从LoRA到完整模型的转换
2025-05-03 10:50:14作者:庞眉杨Will
在大型语言模型(LLM)训练过程中,模型保存是一个关键环节。本文将以Unsloth项目中Llama 3.3 70B模型的保存过程为例,深入分析不同保存方法产生的文件差异及其背后的技术原理。
模型保存的三种方式
Unsloth项目提供了多种模型保存方法,每种方法适用于不同的使用场景:
- LoRA适配器保存:仅保存训练后的适配器权重
- 完整16位模型保存:合并基础模型和适配器权重
- GGUF格式保存:量化后的模型格式
LoRA适配器保存分析
当使用save_pretrained方法保存LoRA适配器时,生成的文件非常精简。以70B参数的Llama模型为例,仅产生一个约6.6GB的safetensors文件。这是因为LoRA方法只保存了训练过程中更新的低秩适配矩阵,而非整个模型的参数。
这种保存方式的优势在于:
- 存储空间需求小
- 便于分享和部署
- 保持了基础模型的完整性
完整16位模型保存机制
使用save_pretrained_merged方法保存完整16位模型时,会产生30个约5GB大小的safetensors文件。这是正常现象,原因在于:
- 模型规模:70B参数的16位浮点模型总大小约为140GB
- 分片存储:出于管理和性能考虑,大模型通常被分割存储
- 技术限制:单个文件大小受文件系统和存储设备限制
GGUF格式保存过程
GGUF格式的保存需要先将模型转换为16位精度,因此也会产生30个分片文件。GGUF是llama.cpp使用的量化格式,支持多种量化级别(如q4_k_m)。转换过程分为两步:
- 将LoRA适配器与基础模型合并为完整16位模型
- 对合并后的模型进行量化转换
技术选型建议
根据使用场景选择合适的保存方式:
- 继续训练/微调:使用LoRA适配器保存
- 推理部署:考虑完整模型或GGUF格式
- 资源受限环境:优先选择量化后的GGUF格式
性能与存储权衡
用户需要根据自身硬件条件和应用需求做出权衡。完整16位模型虽然占用空间大,但保持了最高精度;量化模型节省空间但会损失一定精度;LoRA适配器则需要在推理时动态加载基础模型。
理解这些保存机制有助于开发者更高效地管理和部署大型语言模型,特别是在资源受限的环境中做出合理的技术决策。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217