AdGuard过滤器对Mail.ru问答平台广告残留问题的处理分析
2025-06-21 00:41:47作者:余洋婵Anita
问题背景
Mail.ru旗下的问答平台otvet.mail.ru存在广告残留问题,表现为页面中仍显示未被完全屏蔽的广告元素。该问题在AdGuard for Mac和AdGuard for Windows版本中均有用户报告,涉及不同浏览器环境下的广告拦截异常。
技术分析
-
广告元素特征
从用户提供的截图可见,广告区域呈现为带有明显推广性质的图文内容块,通常包含:- 产品/服务图片
- 促销文案
- 行动号召按钮 这类元素常通过动态加载或异步请求方式注入页面,增加了拦截难度。
-
拦截机制挑战
Mail.ru平台采用的技术特点:- 使用hash参数的重定向机制
- 动态内容加载(AJAX)
- 广告元素与正常内容混合渲染 这些特性导致传统静态规则可能失效,需要动态规则或元素选择器进行精准拦截。
-
解决方案演进
AdGuard团队分两个阶段处理该问题:- 第一阶段(Mac版):通过更新基础过滤规则,针对广告容器的CSS选择器添加拦截规则
- 第二阶段(Windows版):优化动态内容拦截策略,增强对异步加载广告的识别能力
技术实现细节
-
规则优化
开发团队可能采用了以下技术手段:- 扩展基础过滤规则中的元素隐藏规则
- 添加针对特定域名(mail.ru)的专用规则集
- 优化JavaScript注入逻辑以处理动态内容
-
跨平台兼容性
由于Windows和Mac系统网络栈差异:- Windows采用WFP驱动层拦截
- Mac使用网络扩展API 需确保过滤规则在不同平台表现一致
-
用户环境验证
解决方案需考虑:- 不同浏览器内核的兼容性
- 与用户自定义规则的共存
- 扩展脚本的潜在影响
用户建议
-
规则更新
建议用户:- 保持过滤器自动更新
- 定期检查"AdGuard Russian"等地域性过滤器状态
-
问题排查
若仍发现广告残留:- 检查浏览器控制台是否有拦截异常
- 尝试禁用其他扩展进行隔离测试
- 通过元素检查工具确认广告元素特征
技术启示
该案例体现了现代广告拦截面临的典型挑战:
- 网站反拦截技术的持续演进
- 动态内容与正常内容的边界模糊
- 跨平台一致性的维护需求
AdGuard的解决方案展示了如何通过分层防御策略(基础规则+动态检测)应对复杂广告场景,为同类问题提供了技术参考。未来可能需要更多机器学习技术来识别变体广告内容。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648