tch-rs项目中实现Rust版NMS算法的探索
2025-06-11 17:14:36作者:韦蓉瑛
在将YOLO目标检测器从Python迁移到Rust的过程中,一个关键挑战是如何实现torchvision.ops.nms功能。本文将详细介绍如何在tch-rs项目中实现非极大值抑制(NMS)算法及其相关功能。
NMS算法的重要性
非极大值抑制(Non-Maximum Suppression)是目标检测后处理中的关键步骤,它用于消除冗余的检测框,保留最有可能代表真实目标的检测结果。在Python生态中,这一功能通常由torchvision.ops.nms提供。
Rust实现方案
由于tch-rs项目尚未提供torchvision功能的完整绑定,开发者需要自行实现NMS相关算法。以下是完整的Rust实现方案:
基础NMS实现
fn nms(boxes: Tensor, scores: &Tensor, iou_threshold: f32) -> Tensor {
let mut sorting: Vec<i64> = scores.argsort(0, false).try_into().unwrap();
let mut keep: Vec<i64> = Vec::new();
while let Some(idx) = sorting.pop() {
keep.push(idx);
for i in (0..sorting.len()).rev() {
if iou(&boxes.i(idx), &boxes.i(sorting[i])).double_value(&[]) > iou_threshold as f64 {
_ = sorting.remove(i);
}
}
}
Tensor::try_from(keep).unwrap().to_device(boxes.device())
}
这个实现采用了经典的NMS算法流程:
- 根据置信度分数对检测框进行排序
- 选择分数最高的检测框作为保留结果
- 移除与该检测框IoU超过阈值的其他检测框
- 重复上述过程直到处理完所有检测框
IoU计算
交并比(Intersection over Union)是NMS算法的核心计算:
fn iou(box1: &Tensor, box2: &Tensor) -> Tensor {
let zero = Tensor::zeros_like(&box1.i(0));
let b1_area = (box1.i(2) - box1.i(0) + 1) * (box1.i(3) - box1.i(1) + 1);
let b2_area = (box2.i(2) - box2.i(0) + 1) * (box2.i(3) - box2.i(1) + 1);
let i_xmin = box1.i(0).max_other(&box2.i(0));
let i_xmax = box1.i(2).min_other(&box2.i(2));
let i_ymin = box1.i(1).max_other(&box2.i(1));
let i_ymax = box1.i(3).min_other(&box2.i(3));
let i_area = (i_xmax - i_xmin + 1).max_other(&zero) * (i_ymax - i_ymin + 1).max_other(&zero);
&i_area / (b1_area + b2_area - &i_area)
}
批处理NMS实现
针对多类别检测任务,需要实现批处理版本的NMS:
fn batched_nms(boxes: &Tensor, scores: &Tensor, idxs: &Tensor, iou_threshold: f32) -> Tensor {
if boxes.numel() > (if boxes.device() == tch::Device::Cpu {4000} else {20000}) {
_batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
} else {
_batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)
}
}
根据检测框数量,自动选择两种不同的实现策略:
-
坐标偏移法:适用于少量检测框
fn _batched_nms_coordinate_trick(boxes: &Tensor, scores: &Tensor, idxs: &Tensor, iou_threshold: f32) -> Tensor { let max_coordinate = boxes.max(); let offsets = idxs * (max_coordinate + Tensor::ones([1], (tch::Kind::Float, boxes.device()))); let boxes_for_nms = boxes + offsets.unsqueeze(1); nms(boxes_for_nms, scores, iou_threshold) }
-
逐类处理法:适用于大量检测框
fn _batched_nms_vanilla(boxes: &Tensor, scores: &Tensor, idxs: &Tensor, iou_threshold: f32) -> Tensor { let mut keep_mask = Tensor::zeros_like(scores).to_kind(tch::Kind::Bool); let unique = idxs.view(-1).unique_dim(0, false, false, false).0; for i in 0..unique.size()[0] { let curr_indices = Tensor::where_(&idxs.eq_tensor(&unique.i(i))).remove(0); let curr_keep_indices = nms(boxes.i(&curr_indices), &scores.i(&curr_indices), iou_threshold); keep_mask = keep_mask.index_fill(0, &curr_indices.i(&curr_keep_indices), 1); } let keep_indices = Tensor::where_(&keep_mask).remove(0); keep_indices.i(&scores.i(&keep_indices).sort(-1, true).1) }
性能考虑
实现中考虑了不同场景下的性能优化:
- 根据设备类型(CPU/GPU)设置不同的检测框数量阈值
- 小规模数据使用坐标偏移法减少计算开销
- 大规模数据使用逐类处理法避免内存问题
总结
本文展示了在tch-rs项目中实现NMS算法的完整方案,包括基础NMS、IoU计算以及批处理NMS。这些实现虽然可能不是最优性能,但为Rust生态中的目标检测任务提供了可行的解决方案。随着tch-rs项目的不断发展,未来可能会提供更优化的官方实现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
466

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
133
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4