tch-rs项目中实现Rust版NMS算法的探索
2025-06-11 22:09:16作者:韦蓉瑛
在将YOLO目标检测器从Python迁移到Rust的过程中,一个关键挑战是如何实现torchvision.ops.nms功能。本文将详细介绍如何在tch-rs项目中实现非极大值抑制(NMS)算法及其相关功能。
NMS算法的重要性
非极大值抑制(Non-Maximum Suppression)是目标检测后处理中的关键步骤,它用于消除冗余的检测框,保留最有可能代表真实目标的检测结果。在Python生态中,这一功能通常由torchvision.ops.nms提供。
Rust实现方案
由于tch-rs项目尚未提供torchvision功能的完整绑定,开发者需要自行实现NMS相关算法。以下是完整的Rust实现方案:
基础NMS实现
fn nms(boxes: Tensor, scores: &Tensor, iou_threshold: f32) -> Tensor {
let mut sorting: Vec<i64> = scores.argsort(0, false).try_into().unwrap();
let mut keep: Vec<i64> = Vec::new();
while let Some(idx) = sorting.pop() {
keep.push(idx);
for i in (0..sorting.len()).rev() {
if iou(&boxes.i(idx), &boxes.i(sorting[i])).double_value(&[]) > iou_threshold as f64 {
_ = sorting.remove(i);
}
}
}
Tensor::try_from(keep).unwrap().to_device(boxes.device())
}
这个实现采用了经典的NMS算法流程:
- 根据置信度分数对检测框进行排序
- 选择分数最高的检测框作为保留结果
- 移除与该检测框IoU超过阈值的其他检测框
- 重复上述过程直到处理完所有检测框
IoU计算
交并比(Intersection over Union)是NMS算法的核心计算:
fn iou(box1: &Tensor, box2: &Tensor) -> Tensor {
let zero = Tensor::zeros_like(&box1.i(0));
let b1_area = (box1.i(2) - box1.i(0) + 1) * (box1.i(3) - box1.i(1) + 1);
let b2_area = (box2.i(2) - box2.i(0) + 1) * (box2.i(3) - box2.i(1) + 1);
let i_xmin = box1.i(0).max_other(&box2.i(0));
let i_xmax = box1.i(2).min_other(&box2.i(2));
let i_ymin = box1.i(1).max_other(&box2.i(1));
let i_ymax = box1.i(3).min_other(&box2.i(3));
let i_area = (i_xmax - i_xmin + 1).max_other(&zero) * (i_ymax - i_ymin + 1).max_other(&zero);
&i_area / (b1_area + b2_area - &i_area)
}
批处理NMS实现
针对多类别检测任务,需要实现批处理版本的NMS:
fn batched_nms(boxes: &Tensor, scores: &Tensor, idxs: &Tensor, iou_threshold: f32) -> Tensor {
if boxes.numel() > (if boxes.device() == tch::Device::Cpu {4000} else {20000}) {
_batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
} else {
_batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)
}
}
根据检测框数量,自动选择两种不同的实现策略:
-
坐标偏移法:适用于少量检测框
fn _batched_nms_coordinate_trick(boxes: &Tensor, scores: &Tensor, idxs: &Tensor, iou_threshold: f32) -> Tensor { let max_coordinate = boxes.max(); let offsets = idxs * (max_coordinate + Tensor::ones([1], (tch::Kind::Float, boxes.device()))); let boxes_for_nms = boxes + offsets.unsqueeze(1); nms(boxes_for_nms, scores, iou_threshold) }
-
逐类处理法:适用于大量检测框
fn _batched_nms_vanilla(boxes: &Tensor, scores: &Tensor, idxs: &Tensor, iou_threshold: f32) -> Tensor { let mut keep_mask = Tensor::zeros_like(scores).to_kind(tch::Kind::Bool); let unique = idxs.view(-1).unique_dim(0, false, false, false).0; for i in 0..unique.size()[0] { let curr_indices = Tensor::where_(&idxs.eq_tensor(&unique.i(i))).remove(0); let curr_keep_indices = nms(boxes.i(&curr_indices), &scores.i(&curr_indices), iou_threshold); keep_mask = keep_mask.index_fill(0, &curr_indices.i(&curr_keep_indices), 1); } let keep_indices = Tensor::where_(&keep_mask).remove(0); keep_indices.i(&scores.i(&keep_indices).sort(-1, true).1) }
性能考虑
实现中考虑了不同场景下的性能优化:
- 根据设备类型(CPU/GPU)设置不同的检测框数量阈值
- 小规模数据使用坐标偏移法减少计算开销
- 大规模数据使用逐类处理法避免内存问题
总结
本文展示了在tch-rs项目中实现NMS算法的完整方案,包括基础NMS、IoU计算以及批处理NMS。这些实现虽然可能不是最优性能,但为Rust生态中的目标检测任务提供了可行的解决方案。随着tch-rs项目的不断发展,未来可能会提供更优化的官方实现。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0371Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.19 K

暂无简介
Dart
516
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193