在Infinity项目中集成LiteLLM实现高效文本重排序
2025-07-04 11:48:00作者:翟萌耘Ralph
Infinity项目作为一个高性能的嵌入模型服务框架,近期社区成员探索了其与LiteLLM的集成方案。本文将详细介绍如何利用Infinity的文本重排序功能与LiteLLM框架协同工作。
技术背景
Infinity项目提供了基于REST API的模型服务能力,特别适合部署各类NLP模型。其中文本重排序(Rerank)功能能够根据查询语句的相关性对文档进行排序,这在搜索增强生成(RAG)等场景中尤为重要。
LiteLLM作为一个统一的LLM调用接口,支持多种模型提供商的API规范。通过两者的结合,开发者可以更方便地在现有LLM应用中集成重排序功能。
实现方案
服务端部署
首先需要启动Infinity服务,指定重排序模型:
infinity_emb v2 --url-prefix /v2 --model-id mixedbread-ai/mxbai-rerank-xsmall-v1
此命令会启动一个本地服务,监听7997端口,提供符合Cohere API规范的/v2/rerank端点。
客户端调用
通过LiteLLM调用时,需要注意以下几点:
- 虽然需要设置COHERE_API_KEY环境变量,但实际值不会被使用
- 指定api_base参数指向本地服务地址
- model参数使用"cohere/local-infinity-model"特殊值
示例代码:
from litellm import rerank
import os
os.environ["COHERE_API_KEY"] = "dummy_key"
response = rerank(
model="cohere/local-infinity-model",
query="巴黎在哪里?",
documents=["巴黎在法国", "巴黎在德国"],
top_n=3,
api_base="http://localhost:7997/v2/rerank",
)
结果解析
返回结果包含每个文档的相关性评分(relevance_score)和原始索引(index),开发者可以根据这些信息优化搜索结果。
技术要点
- Infinity服务完全兼容Cohere API规范,这使得与LiteLLM的集成变得简单
- 本地部署方案避免了云服务调用延迟和费用问题
- 轻量级的mxbai-rerank-xsmall-v1模型在保持较高准确率的同时具有出色的性能
应用场景
这种集成方案特别适合以下场景:
- 本地知识库搜索增强
- 对话系统中的上下文排序
- 个性化推荐系统的候选集筛选
总结
通过Infinity与LiteLLM的集成,开发者可以轻松为现有LLM应用添加高效的文本重排序能力。这种方案既保持了云原生API的易用性,又具备本地部署的性能优势,是构建生产级NLP应用的理想选择。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76