Text-embeddings-inference项目本地模型部署指南
背景介绍
Text-embeddings-inference是Hugging Face推出的一个高效文本嵌入推理服务项目,它可以帮助开发者快速部署预训练的语言模型用于生成文本嵌入表示。在实际部署过程中,很多开发者遇到了无法从Hugging Face Hub下载模型的问题,本文将详细介绍如何直接使用本地模型进行部署。
常见问题分析
在Docker环境中部署text-embeddings-inference服务时,系统默认会尝试从Hugging Face Hub下载指定的模型。然而,由于网络限制或访问权限问题,很多开发者会遇到连接超时或拒绝连接的错误,例如:
Error: Could not download model artifacts
Caused by:
0: request error: error sending request for url (https://huggingface.co/BAAI/bge-large-zh-v1.5/resolve/refs%2Fpr%2F13/config.json): error trying to connect: tcp connect error: Connection refused (os error 111)
解决方案
1. 准备工作
首先需要将所需模型下载到本地文件系统中。可以通过Hugging Face提供的工具或直接下载模型文件到指定目录。例如,将bge-reranker-base模型下载到本地data目录下。
2. 正确的Docker命令
使用以下命令可以成功部署本地模型:
model="./data/bge-reranker-base" && volume="$PWD/data" && docker run -p 9003:9003 -v $volume:/data -e PORT=9003 --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.1 --model-id $model
3. 关键注意事项
-
路径格式:必须使用相对路径而非绝对路径。例如"./data/model-name"是正确的,而"/data/model-name"可能会导致问题。
-
端口映射:确保主机端口(第一个端口号)与容器内服务端口(第二个端口号)一致,如"-p 9003:9003"。
-
卷挂载:通过-v参数将本地模型目录挂载到容器内,确保容器可以访问模型文件。
-
GPU支持:如需GPU加速,添加--gpus all参数,并选择支持GPU的镜像版本。
技术原理
text-embeddings-inference服务在启动时会检查指定的模型路径。如果路径以"./"开头,它会将其视为本地路径并直接加载;否则,它会尝试从Hugging Face Hub下载。这种设计使得开发者可以灵活选择使用本地模型或远程模型。
最佳实践建议
-
对于生产环境,建议预先下载模型到本地,避免运行时下载失败的风险。
-
保持模型目录结构完整,确保包含所有必要的配置文件如config.json。
-
对于大型模型,考虑使用支持GPU的镜像版本以获得更好的推理性能。
-
定期检查并更新Docker镜像版本,以获取最新的性能优化和安全更新。
通过以上方法,开发者可以轻松绕过Hugging Face Hub访问限制,直接使用本地模型部署高效的文本嵌入推理服务。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









