首页
/ Text-embeddings-inference项目本地模型部署指南

Text-embeddings-inference项目本地模型部署指南

2025-06-24 19:23:46作者:廉彬冶Miranda

背景介绍

Text-embeddings-inference是Hugging Face推出的一个高效文本嵌入推理服务项目,它可以帮助开发者快速部署预训练的语言模型用于生成文本嵌入表示。在实际部署过程中,很多开发者遇到了无法从Hugging Face Hub下载模型的问题,本文将详细介绍如何直接使用本地模型进行部署。

常见问题分析

在Docker环境中部署text-embeddings-inference服务时,系统默认会尝试从Hugging Face Hub下载指定的模型。然而,由于网络限制或访问权限问题,很多开发者会遇到连接超时或拒绝连接的错误,例如:

Error: Could not download model artifacts
Caused by:
    0: request error: error sending request for url (https://huggingface.co/BAAI/bge-large-zh-v1.5/resolve/refs%2Fpr%2F13/config.json): error trying to connect: tcp connect error: Connection refused (os error 111)

解决方案

1. 准备工作

首先需要将所需模型下载到本地文件系统中。可以通过Hugging Face提供的工具或直接下载模型文件到指定目录。例如,将bge-reranker-base模型下载到本地data目录下。

2. 正确的Docker命令

使用以下命令可以成功部署本地模型:

model="./data/bge-reranker-base" && volume="$PWD/data" && docker run -p 9003:9003 -v $volume:/data -e PORT=9003 --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.1 --model-id $model

3. 关键注意事项

  1. 路径格式:必须使用相对路径而非绝对路径。例如"./data/model-name"是正确的,而"/data/model-name"可能会导致问题。

  2. 端口映射:确保主机端口(第一个端口号)与容器内服务端口(第二个端口号)一致,如"-p 9003:9003"。

  3. 卷挂载:通过-v参数将本地模型目录挂载到容器内,确保容器可以访问模型文件。

  4. GPU支持:如需GPU加速,添加--gpus all参数,并选择支持GPU的镜像版本。

技术原理

text-embeddings-inference服务在启动时会检查指定的模型路径。如果路径以"./"开头,它会将其视为本地路径并直接加载;否则,它会尝试从Hugging Face Hub下载。这种设计使得开发者可以灵活选择使用本地模型或远程模型。

最佳实践建议

  1. 对于生产环境,建议预先下载模型到本地,避免运行时下载失败的风险。

  2. 保持模型目录结构完整,确保包含所有必要的配置文件如config.json。

  3. 对于大型模型,考虑使用支持GPU的镜像版本以获得更好的推理性能。

  4. 定期检查并更新Docker镜像版本,以获取最新的性能优化和安全更新。

通过以上方法,开发者可以轻松绕过Hugging Face Hub访问限制,直接使用本地模型部署高效的文本嵌入推理服务。

登录后查看全文

项目优选

收起
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
118
207
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
523
403
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
63
145
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
297
1.02 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
251
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
391
37
arkanalyzerarkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
39
40
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
583
41
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
693
91