MMsegmentation分布式训练中的Shell脚本执行问题解析
2025-05-26 10:54:07作者:伍霜盼Ellen
问题现象
在使用MMsegmentation进行分布式训练时,用户按照官方文档执行分布式训练命令时可能会遇到"Bad substitution"错误。具体表现为当运行类似以下命令时:
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 sh tools/dist_train.sh ${CONFIG_FILE} 4
系统会返回错误信息:
tools/dist_train.sh: 8: Bad substitution
问题根源
这个问题的根本原因在于Shell解释器的选择。在Linux系统中,sh命令通常链接到dash(Debian Almquist Shell),而bash(Bourne Again Shell)是更功能丰富的Shell解释器。
dist_train.sh脚本中使用了Bash特有的语法特性(如数组操作、字符串替换等),这些特性在dash中不被支持。当使用sh命令执行脚本时,系统会调用dash来解释脚本,遇到不支持的语法就会报"Bad substitution"错误。
解决方案
解决这个问题非常简单,只需将执行命令中的sh替换为bash:
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_train.sh ${CONFIG_FILE} 4
或者直接在脚本文件第一行添加shebang指定使用bash:
#!/bin/bash
然后给脚本添加可执行权限:
chmod +x tools/dist_train.sh
之后就可以直接执行:
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
深入理解Shell解释器差异
-
历史背景:
sh是最初的Unix shellbash是GNU项目开发的增强版本dash是轻量级的sh兼容实现,专注于速度
-
主要差异:
- 数组处理方式不同
- 字符串操作语法不同
- 变量替换规则不同
- 流程控制结构支持不同
-
为什么MMsegmentation使用bash特性:
- 需要处理复杂的参数传递
- 需要支持多GPU配置
- 需要灵活的环境变量处理
最佳实践建议
-
对于深度学习项目中的shell脚本:
- 明确指定使用
bash执行 - 在脚本开头添加
#!/bin/bash声明 - 避免使用过于复杂的shell特性以保证兼容性
- 明确指定使用
-
分布式训练时的额外注意事项:
- 确保所有节点使用相同的shell环境
- 检查环境变量是否在所有节点一致
- 验证网络通信端口是否可用
-
调试技巧:
- 使用
bash -x script.sh调试脚本执行 - 检查
echo $SHELL确认当前shell环境 - 使用
ls -l /bin/sh查看默认sh链接
- 使用
总结
在MMsegmentation的分布式训练场景中,正确选择shell解释器是确保训练脚本正常执行的关键。理解不同shell解释器之间的差异,采用合适的执行方式,可以避免类似"Bad substitution"这样的常见问题。对于深度学习框架中的自动化脚本,推荐始终使用bash来确保功能完整性和兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143