NPS服务端CPU占用过高问题分析与解决方案
问题现象
在Windows Server 2016 x64环境下运行的NPS 0.26.17版本服务端,当客户端连接数达到93个时,出现了CPU使用率持续维持在50%的高负载现象。初期启动时表现正常,但随着运行时间延长,CPU占用逐渐升高并稳定在较高水平。
问题排查
通过日志分析发现,服务端频繁出现"EOF"错误记录,这些错误主要发生在http.go文件的257行位置。这些错误表明客户端连接在非预期情况下被终止,可能是导致CPU资源消耗增加的原因之一。
经过进一步测试验证,发现当所有客户端连接都启用了加密功能时,CPU使用率会显著升高。而当取消客户端加密设置后,CPU负载恢复正常水平。这表明加密功能的实现可能存在性能优化不足的问题。
技术分析
-
加密开销:数据加密解密操作本身是CPU密集型任务,特别是当大量客户端同时进行加密通信时,会对服务端CPU造成较大压力。
-
实现优化:NPS的加密功能实现可能没有充分优化,导致加密解密效率不高,特别是在高并发场景下性能下降明显。
-
连接管理:频繁的EOF错误表明连接稳定性存在问题,可能导致服务端不断尝试重建连接,增加了额外的CPU开销。
解决方案
-
选择性使用加密:对于非敏感数据传输场景,可以适当减少加密客户端数量,只在必要时启用加密功能。
-
版本升级:考虑升级到更新的NPS版本,可能已经修复了相关性能问题。
-
负载均衡:对于大规模部署,可以考虑将客户端分散到多个NPS服务实例上,降低单个实例的负载压力。
-
性能监控:建立长期性能监控机制,及时发现并解决类似性能问题。
最佳实践建议
-
在生产环境部署前,应进行充分的性能测试,特别是加密功能在高并发下的表现。
-
根据实际安全需求评估加密的必要性,避免不必要的性能损耗。
-
定期检查服务日志,及时发现并解决连接异常问题。
-
考虑硬件加速方案,如支持AES-NI指令集的CPU,可以显著提高加密解密性能。
通过以上分析和解决方案,可以有效缓解NPS服务端CPU占用过高的问题,确保服务稳定运行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00