Pytorch_Tutorial 项目使用指南
1. 项目介绍
Pytorch_Tutorial 是一个由 Tessellate Imaging 提供的开源项目,旨在通过一系列 Jupyter Notebook 教程帮助深度学习研究人员和开发者学习 PyTorch 的基本功能和高级应用。该项目涵盖了从基础的 Tensor 操作到复杂的神经网络构建和训练的各个方面。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 Python 和 PyTorch。你可以通过以下命令安装 PyTorch:
pip install torch torchvision
2.2 克隆项目
使用 Git 克隆 Pytorch_Tutorial 项目到本地:
git clone https://github.com/Tessellate-Imaging/Pytorch_Tutorial.git
cd Pytorch_Tutorial
2.3 运行教程
项目中的每个教程都是一个独立的 Jupyter Notebook 文件。你可以使用 Jupyter Notebook 打开并运行这些教程:
jupyter notebook
选择你感兴趣的教程文件(例如 A) RoadMap 1 - Torch Main 1 - Basic Tensor functions.ipynb)并开始学习。
3. 应用案例和最佳实践
3.1 基础 Tensor 操作
教程 A) RoadMap 1 - Torch Main 1 - Basic Tensor functions.ipynb 介绍了 PyTorch 中 Tensor 的基本操作,包括创建、索引、切片、数学运算等。
3.2 神经网络构建
教程 G) RoadMap 7 - Torch NN 1 - Convolution, Pooling and Padding Layers.ipynb 和 H) RoadMap 8 - Torch NN 2 - Activation Layers.ipynb 展示了如何使用 PyTorch 构建卷积神经网络(CNN)和激活层。
3.3 模型训练与验证
教程 O) RoadMap 15 - Classification 2 - Training & Validating [Custom CNN, Public Dataset].ipynb 和 P) RoadMap 16 - Classification 3 - Training & Validating [Custom CNN, Custom Dataset].ipynb 提供了如何使用自定义数据集训练和验证模型的详细步骤。
4. 典型生态项目
4.1 Monk AI
Monk AI 是一个低代码、统一的深度学习框架,支持 Keras、PyTorch 和 GluonCV。它提供了一个语法不变的包装器,帮助开发者创建、管理和版本控制深度学习实验,并快速找到最佳超参数。
4.2 PyTorch 官方教程
PyTorch 官方提供了丰富的教程和文档,涵盖了从基础到高级的各种主题。你可以访问 PyTorch 官方教程 获取更多信息。
4.3 PyTorch 生态工具
PyTorch 生态系统中包含了许多有用的工具和框架,如 TensorBoard、Captum 等,这些工具可以帮助你更好地理解和优化你的模型。
通过以上内容,你可以快速上手 Pytorch_Tutorial 项目,并深入了解 PyTorch 的各种功能和应用场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00