Seurat中AggregateExpression函数计算差异表达时的注意事项
2025-07-02 01:36:23作者:廉彬冶Miranda
概述
在使用Seurat进行单细胞数据分析时,AggregateExpression函数是一个常用的伪批量分析工具。然而,许多用户在使用该函数进行差异表达分析时,可能会遇到一些计算结果与预期不符的情况。本文将深入探讨AggregateExpression函数的工作原理,分析可能遇到的问题,并提供解决方案。
问题现象
用户在比较Seurat的AggregateExpression函数与edgeR的伪批量分析结果时发现,某些基因的fold change方向出现了矛盾。具体表现为:
- 当使用全部基因进行AggregateExpression分析时,某些基因(如Ltf)在表达量较高的组别中反而计算出负的fold change
- 当仅使用少量基因进行AggregateExpression分析时,同一基因的fold change方向恢复正常
- 使用不同数据格式(原始计数、标准化数据、缩放数据)计算得到的fold change值不一致
原因分析
1. 标准化过程的特征依赖性
AggregateExpression函数在内部执行标准化操作(类似于NormalizeData函数),但关键的是,这个标准化过程是基于用户提供的特征(基因)子集进行的。这意味着:
- 使用不同数量的基因进行标准化会导致不同的标准化因子
- 标准化后的表达值会随着输入基因数量的变化而变化
- 这解释了为什么使用全部基因和少量基因会得到不同的fold change方向
2. 伪计数处理的影响
在计算平均表达量时,常用的公式会涉及伪计数(pseudocount)的处理。原始公式中除以样本数量的操作可能导致计算结果出现偏差:
mean.fxn_norm <- function(x){log(x = (rowSums(x = expm1(x = x)) + 1)/NCOL(x), base = 2)}
这种处理方式在某些情况下会导致表达量较高的组别计算出更低的平均值,从而产生负的fold change。
3. 细胞数量和测序深度的影响
伪批量分析中,不同组的细胞数量和测序深度差异会显著影响结果:
- 细胞数量多的组别可能表现出更高的总计数,即使单个细胞的表达量较低
- 测序深度大的样本会人为提高基因的表达水平
- 这些因素需要通过适当的标准化来校正
解决方案
1. 推荐的分析流程
- 使用全部基因进行AggregateExpression分析:确保标准化过程基于完整的基因集,避免因特征子集选择导致的偏差
- 后续再筛选感兴趣的基因:在完成伪批量分析后,再对结果进行子集筛选
- 使用适当的统计检验:推荐使用专门的差异表达分析工具(如DESeq2、edgeR等)而非直接从聚合计数计算fold change
2. 修正的均值计算函数
对于需要手动计算fold change的情况,建议修改均值计算函数以避免伪计数处理带来的问题:
mean.fxn_norm <- function(x){log(x = (rowMeans(x = expm1(x = x)) + 0.000001), base = 2)}
这个修改版本:
- 使用rowMeans替代rowSums/NCOL
- 采用更小的伪计数值(0.000001)
- 能够更准确地反映表达量的真实差异
3. 数据格式选择建议
- 原始计数:适合输入专门的差异表达分析工具
- 标准化数据:用于探索性分析和可视化
- 缩放数据:主要用于降维和聚类分析
不同数据格式计算得到的fold change确实会存在差异,这是由各自的计算方法和标准化过程决定的。建议根据分析目的选择合适的数据格式。
最佳实践
- 始终记录使用的基因集合和参数设置
- 对关键结果进行交叉验证(如同时使用Seurat和edgeR/DESeq2)
- 注意细胞数量和测序深度的平衡
- 对标准化过程保持透明和理解
结论
Seurat的AggregateExpression函数是一个强大的伪批量分析工具,但需要正确理解其标准化过程和计算方法。通过采用本文推荐的最佳实践和修正方案,用户可以避免fold change计算中的常见陷阱,获得更可靠的差异表达分析结果。记住,在单细胞数据分析中,方法的选择和参数的设置往往比工具本身更重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873