Seurat中AggregateExpression函数计算差异表达时的注意事项
2025-07-02 09:28:07作者:廉彬冶Miranda
概述
在使用Seurat进行单细胞数据分析时,AggregateExpression函数是一个常用的伪批量分析工具。然而,许多用户在使用该函数进行差异表达分析时,可能会遇到一些计算结果与预期不符的情况。本文将深入探讨AggregateExpression函数的工作原理,分析可能遇到的问题,并提供解决方案。
问题现象
用户在比较Seurat的AggregateExpression函数与edgeR的伪批量分析结果时发现,某些基因的fold change方向出现了矛盾。具体表现为:
- 当使用全部基因进行AggregateExpression分析时,某些基因(如Ltf)在表达量较高的组别中反而计算出负的fold change
- 当仅使用少量基因进行AggregateExpression分析时,同一基因的fold change方向恢复正常
- 使用不同数据格式(原始计数、标准化数据、缩放数据)计算得到的fold change值不一致
原因分析
1. 标准化过程的特征依赖性
AggregateExpression函数在内部执行标准化操作(类似于NormalizeData函数),但关键的是,这个标准化过程是基于用户提供的特征(基因)子集进行的。这意味着:
- 使用不同数量的基因进行标准化会导致不同的标准化因子
- 标准化后的表达值会随着输入基因数量的变化而变化
- 这解释了为什么使用全部基因和少量基因会得到不同的fold change方向
2. 伪计数处理的影响
在计算平均表达量时,常用的公式会涉及伪计数(pseudocount)的处理。原始公式中除以样本数量的操作可能导致计算结果出现偏差:
mean.fxn_norm <- function(x){log(x = (rowSums(x = expm1(x = x)) + 1)/NCOL(x), base = 2)}
这种处理方式在某些情况下会导致表达量较高的组别计算出更低的平均值,从而产生负的fold change。
3. 细胞数量和测序深度的影响
伪批量分析中,不同组的细胞数量和测序深度差异会显著影响结果:
- 细胞数量多的组别可能表现出更高的总计数,即使单个细胞的表达量较低
- 测序深度大的样本会人为提高基因的表达水平
- 这些因素需要通过适当的标准化来校正
解决方案
1. 推荐的分析流程
- 使用全部基因进行AggregateExpression分析:确保标准化过程基于完整的基因集,避免因特征子集选择导致的偏差
- 后续再筛选感兴趣的基因:在完成伪批量分析后,再对结果进行子集筛选
- 使用适当的统计检验:推荐使用专门的差异表达分析工具(如DESeq2、edgeR等)而非直接从聚合计数计算fold change
2. 修正的均值计算函数
对于需要手动计算fold change的情况,建议修改均值计算函数以避免伪计数处理带来的问题:
mean.fxn_norm <- function(x){log(x = (rowMeans(x = expm1(x = x)) + 0.000001), base = 2)}
这个修改版本:
- 使用rowMeans替代rowSums/NCOL
- 采用更小的伪计数值(0.000001)
- 能够更准确地反映表达量的真实差异
3. 数据格式选择建议
- 原始计数:适合输入专门的差异表达分析工具
- 标准化数据:用于探索性分析和可视化
- 缩放数据:主要用于降维和聚类分析
不同数据格式计算得到的fold change确实会存在差异,这是由各自的计算方法和标准化过程决定的。建议根据分析目的选择合适的数据格式。
最佳实践
- 始终记录使用的基因集合和参数设置
- 对关键结果进行交叉验证(如同时使用Seurat和edgeR/DESeq2)
- 注意细胞数量和测序深度的平衡
- 对标准化过程保持透明和理解
结论
Seurat的AggregateExpression函数是一个强大的伪批量分析工具,但需要正确理解其标准化过程和计算方法。通过采用本文推荐的最佳实践和修正方案,用户可以避免fold change计算中的常见陷阱,获得更可靠的差异表达分析结果。记住,在单细胞数据分析中,方法的选择和参数的设置往往比工具本身更重要。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28