Seurat中AggregateExpression函数计算差异表达时的注意事项
2025-07-02 08:00:36作者:廉彬冶Miranda
概述
在使用Seurat进行单细胞数据分析时,AggregateExpression函数是一个常用的伪批量分析工具。然而,许多用户在使用该函数进行差异表达分析时,可能会遇到一些计算结果与预期不符的情况。本文将深入探讨AggregateExpression函数的工作原理,分析可能遇到的问题,并提供解决方案。
问题现象
用户在比较Seurat的AggregateExpression函数与edgeR的伪批量分析结果时发现,某些基因的fold change方向出现了矛盾。具体表现为:
- 当使用全部基因进行AggregateExpression分析时,某些基因(如Ltf)在表达量较高的组别中反而计算出负的fold change
- 当仅使用少量基因进行AggregateExpression分析时,同一基因的fold change方向恢复正常
- 使用不同数据格式(原始计数、标准化数据、缩放数据)计算得到的fold change值不一致
原因分析
1. 标准化过程的特征依赖性
AggregateExpression函数在内部执行标准化操作(类似于NormalizeData函数),但关键的是,这个标准化过程是基于用户提供的特征(基因)子集进行的。这意味着:
- 使用不同数量的基因进行标准化会导致不同的标准化因子
- 标准化后的表达值会随着输入基因数量的变化而变化
- 这解释了为什么使用全部基因和少量基因会得到不同的fold change方向
2. 伪计数处理的影响
在计算平均表达量时,常用的公式会涉及伪计数(pseudocount)的处理。原始公式中除以样本数量的操作可能导致计算结果出现偏差:
mean.fxn_norm <- function(x){log(x = (rowSums(x = expm1(x = x)) + 1)/NCOL(x), base = 2)}
这种处理方式在某些情况下会导致表达量较高的组别计算出更低的平均值,从而产生负的fold change。
3. 细胞数量和测序深度的影响
伪批量分析中,不同组的细胞数量和测序深度差异会显著影响结果:
- 细胞数量多的组别可能表现出更高的总计数,即使单个细胞的表达量较低
- 测序深度大的样本会人为提高基因的表达水平
- 这些因素需要通过适当的标准化来校正
解决方案
1. 推荐的分析流程
- 使用全部基因进行AggregateExpression分析:确保标准化过程基于完整的基因集,避免因特征子集选择导致的偏差
- 后续再筛选感兴趣的基因:在完成伪批量分析后,再对结果进行子集筛选
- 使用适当的统计检验:推荐使用专门的差异表达分析工具(如DESeq2、edgeR等)而非直接从聚合计数计算fold change
2. 修正的均值计算函数
对于需要手动计算fold change的情况,建议修改均值计算函数以避免伪计数处理带来的问题:
mean.fxn_norm <- function(x){log(x = (rowMeans(x = expm1(x = x)) + 0.000001), base = 2)}
这个修改版本:
- 使用rowMeans替代rowSums/NCOL
- 采用更小的伪计数值(0.000001)
- 能够更准确地反映表达量的真实差异
3. 数据格式选择建议
- 原始计数:适合输入专门的差异表达分析工具
- 标准化数据:用于探索性分析和可视化
- 缩放数据:主要用于降维和聚类分析
不同数据格式计算得到的fold change确实会存在差异,这是由各自的计算方法和标准化过程决定的。建议根据分析目的选择合适的数据格式。
最佳实践
- 始终记录使用的基因集合和参数设置
- 对关键结果进行交叉验证(如同时使用Seurat和edgeR/DESeq2)
- 注意细胞数量和测序深度的平衡
- 对标准化过程保持透明和理解
结论
Seurat的AggregateExpression函数是一个强大的伪批量分析工具,但需要正确理解其标准化过程和计算方法。通过采用本文推荐的最佳实践和修正方案,用户可以避免fold change计算中的常见陷阱,获得更可靠的差异表达分析结果。记住,在单细胞数据分析中,方法的选择和参数的设置往往比工具本身更重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
52
32