RuoYi-Vue-Pro项目中用户类型扩展的实践与思考
2025-05-04 14:50:43作者:苗圣禹Peter
背景介绍
在基于RuoYi-Vue-Pro框架开发企业级管理系统时,经常会遇到需要扩展用户类型的场景。框架默认提供了ADMIN(管理员)和MEMBER(普通成员)两种基础用户类型,通过请求路径前缀(如/admin-api)自动识别用户类型。但在实际业务中,这种简单的二元划分往往无法满足复杂的业务需求。
现有机制分析
RuoYi-Vue-Pro框架通过WebFrameworkUtils.getLoginUserType()方法实现用户类型识别,其核心逻辑是基于请求路径的前缀匹配:
- 访问路径包含"/admin-api"前缀时,识别为ADMIN类型
- 其他情况识别为MEMBER类型
这种设计虽然简单直接,但在需要支持多种用户角色的系统中就显得不够灵活。例如需要支持供应商(SUPPLIER)这类特殊用户时,现有的机制就无法直接满足需求。
扩展方案探讨
方案一:数据库扩展法
通过在部门表、用户表中增加userType字段来标记用户类型,实现数据隔离:
-
优点:
- 实现简单直接
- 数据隔离清晰
- 易于维护和查询
-
挑战:
- 需要修改现有表结构
- 需要处理历史数据迁移
- 权限控制逻辑需要相应调整
方案二:路径匹配扩展法
通过扩展WebProperties.getApi().getController()配置,实现基于包路径的用户类型识别:
-
优点:
- 保持框架原有设计思路
- 不需要修改数据库结构
- 配置相对集中
-
挑战:
- 需要维护复杂的路径映射关系
- 不够直观,维护成本较高
- 可能产生路径冲突
方案三:混合实现法
结合上述两种方案的优点:
- 保留路径前缀识别机制作为基础
- 增加基于数据库的用户类型字段
- 实现灵活的多级权限控制
最佳实践建议
基于项目经验,推荐采用以下扩展方案:
-
数据库层面:
- 在用户表中添加user_type字段
- 使用枚举定义所有用户类型(ADMIN,MEMBER,SUPPLIER等)
- 建立用户-角色-权限的标准RBAC模型
-
框架扩展:
- 重写WebFrameworkUtils.getLoginUserType()方法
- 实现基于Token解析的多类型识别
- 保留路径前缀作为备用识别机制
-
权限控制:
- 使用注解式权限控制
- 实现基于用户类型的动态数据过滤
- 建立统一的数据权限拦截器
实现示例
// 用户类型枚举定义
public enum UserType {
ADMIN(1, "管理员"),
MEMBER(2, "普通用户"),
SUPPLIER(3, "供应商");
// 省略实现细节
}
// 扩展的用户类型识别逻辑
public class CustomUserTypeResolver {
public static UserType resolve(HttpServletRequest request) {
// 1. 尝试从Token中解析用户类型
UserType type = parseFromToken(request);
if(type != null) {
return type;
}
// 2. 回退到路径前缀识别
if(request.getRequestURI().startsWith("/admin-api")) {
return UserType.ADMIN;
} else if(request.getRequestURI().startsWith("/supplier-api")) {
return UserType.SUPPLIER;
}
// 3. 默认返回MEMBER
return UserType.MEMBER;
}
private static UserType parseFromToken(HttpServletRequest request) {
// Token解析实现
}
}
总结
在RuoYi-Vue-Pro项目中扩展用户类型时,需要综合考虑框架设计、业务需求和系统可维护性。推荐采用基于Token解析为主、路径前缀识别为辅的方案,配合数据库中的用户类型字段,实现灵活的多角色支持。这种方案既保持了框架原有的简洁性,又能满足复杂的业务场景需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1