RuoYi-Vue-Pro项目中用户类型扩展的实践与思考
2025-05-04 11:44:10作者:苗圣禹Peter
背景介绍
在基于RuoYi-Vue-Pro框架开发企业级管理系统时,经常会遇到需要扩展用户类型的场景。框架默认提供了ADMIN(管理员)和MEMBER(普通成员)两种基础用户类型,通过请求路径前缀(如/admin-api)自动识别用户类型。但在实际业务中,这种简单的二元划分往往无法满足复杂的业务需求。
现有机制分析
RuoYi-Vue-Pro框架通过WebFrameworkUtils.getLoginUserType()方法实现用户类型识别,其核心逻辑是基于请求路径的前缀匹配:
- 访问路径包含"/admin-api"前缀时,识别为ADMIN类型
- 其他情况识别为MEMBER类型
这种设计虽然简单直接,但在需要支持多种用户角色的系统中就显得不够灵活。例如需要支持供应商(SUPPLIER)这类特殊用户时,现有的机制就无法直接满足需求。
扩展方案探讨
方案一:数据库扩展法
通过在部门表、用户表中增加userType字段来标记用户类型,实现数据隔离:
-
优点:
- 实现简单直接
- 数据隔离清晰
- 易于维护和查询
-
挑战:
- 需要修改现有表结构
- 需要处理历史数据迁移
- 权限控制逻辑需要相应调整
方案二:路径匹配扩展法
通过扩展WebProperties.getApi().getController()配置,实现基于包路径的用户类型识别:
-
优点:
- 保持框架原有设计思路
- 不需要修改数据库结构
- 配置相对集中
-
挑战:
- 需要维护复杂的路径映射关系
- 不够直观,维护成本较高
- 可能产生路径冲突
方案三:混合实现法
结合上述两种方案的优点:
- 保留路径前缀识别机制作为基础
- 增加基于数据库的用户类型字段
- 实现灵活的多级权限控制
最佳实践建议
基于项目经验,推荐采用以下扩展方案:
-
数据库层面:
- 在用户表中添加user_type字段
- 使用枚举定义所有用户类型(ADMIN,MEMBER,SUPPLIER等)
- 建立用户-角色-权限的标准RBAC模型
-
框架扩展:
- 重写WebFrameworkUtils.getLoginUserType()方法
- 实现基于Token解析的多类型识别
- 保留路径前缀作为备用识别机制
-
权限控制:
- 使用注解式权限控制
- 实现基于用户类型的动态数据过滤
- 建立统一的数据权限拦截器
实现示例
// 用户类型枚举定义
public enum UserType {
ADMIN(1, "管理员"),
MEMBER(2, "普通用户"),
SUPPLIER(3, "供应商");
// 省略实现细节
}
// 扩展的用户类型识别逻辑
public class CustomUserTypeResolver {
public static UserType resolve(HttpServletRequest request) {
// 1. 尝试从Token中解析用户类型
UserType type = parseFromToken(request);
if(type != null) {
return type;
}
// 2. 回退到路径前缀识别
if(request.getRequestURI().startsWith("/admin-api")) {
return UserType.ADMIN;
} else if(request.getRequestURI().startsWith("/supplier-api")) {
return UserType.SUPPLIER;
}
// 3. 默认返回MEMBER
return UserType.MEMBER;
}
private static UserType parseFromToken(HttpServletRequest request) {
// Token解析实现
}
}
总结
在RuoYi-Vue-Pro项目中扩展用户类型时,需要综合考虑框架设计、业务需求和系统可维护性。推荐采用基于Token解析为主、路径前缀识别为辅的方案,配合数据库中的用户类型字段,实现灵活的多角色支持。这种方案既保持了框架原有的简洁性,又能满足复杂的业务场景需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25