PEFT项目中的ChatGLM3-6B微调问题分析与解决方案
2025-05-13 12:18:12作者:吴年前Myrtle
在自然语言处理领域,使用参数高效微调(PEFT)技术对大型语言模型进行适配已成为一种常见做法。近期,在使用PEFT库(版本≥0.7.0)对ChatGLM3-6B模型进行微调时,开发者遇到了一个典型问题:模型在训练过程中损失值迅速降为零,导致模型无法生成任何有意义的输出。
问题现象
当使用PEFT 0.7.0及以上版本对ChatGLM3-6B进行微调时,开发者观察到以下异常现象:
- 训练初期损失值会出现一个高峰,随后迅速降至零
 - 微调后的模型完全丧失生成能力,无法输出任何token
 - 该问题与数据集无关,使用任何数据集都会重现相同现象
 
值得注意的是,当将PEFT降级至0.6.0版本时,这些问题会消失,模型能够正常训练和生成输出。
技术分析
经过深入调查,发现问题根源在于模型权重精度与PEFT版本的兼容性。具体表现为:
- 在PEFT 0.7.0版本中引入的重大重构(PR #1106)改变了参数处理方式
 - 当使用float16(半精度)权重时,会导致梯度更新异常
 - 问题在第一个优化器步骤后开始显现(通常在8个梯度累积步骤后)
 
解决方案
针对这一问题,开发者提供了两种有效的解决方案:
方案一:使用bfloat16精度
将模型权重设置为bfloat16精度可以完全解决问题。具体实现方式:
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,  # 关键设置
    low_cpu_mem_usage=True, 
    device_map="cuda"
)
同时在TrainingArguments中启用bfloat16:
args = TrainingArguments(
    bf16=True,  # 启用bfloat16
    ...其他参数...
)
方案二:强制转换为float32
对于不支持bfloat16的旧GPU设备,可以将PEFT参数显式转换为float32:
model = get_peft_model(model, config)
for param in model.parameters():
    if param.requires_grad:
        param.data = param.data.float()  # 转换为float32
最佳实践建议
- 在使用PEFT进行微调时,应特别注意模型权重精度设置
 - 对于ChatGLM3-6B这类大型模型,推荐优先使用bfloat16精度
 - 定期检查训练过程中的损失曲线,异常时应及时中断训练
 - 保持PEFT库版本更新,但升级后应进行充分测试
 
总结
这一问题揭示了深度学习框架中精度处理的重要性,特别是在参数高效微调场景下。通过合理选择权重精度,开发者可以避免模型训练失败的风险,确保微调过程顺利进行。对于使用ChatGLM3-6B和PEFT的研究人员和开发者,建议采用上述解决方案来保证模型训练的有效性。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447