PEFT项目中的ChatGLM3-6B微调问题分析与解决方案
2025-05-13 09:01:37作者:吴年前Myrtle
在自然语言处理领域,使用参数高效微调(PEFT)技术对大型语言模型进行适配已成为一种常见做法。近期,在使用PEFT库(版本≥0.7.0)对ChatGLM3-6B模型进行微调时,开发者遇到了一个典型问题:模型在训练过程中损失值迅速降为零,导致模型无法生成任何有意义的输出。
问题现象
当使用PEFT 0.7.0及以上版本对ChatGLM3-6B进行微调时,开发者观察到以下异常现象:
- 训练初期损失值会出现一个高峰,随后迅速降至零
- 微调后的模型完全丧失生成能力,无法输出任何token
- 该问题与数据集无关,使用任何数据集都会重现相同现象
值得注意的是,当将PEFT降级至0.6.0版本时,这些问题会消失,模型能够正常训练和生成输出。
技术分析
经过深入调查,发现问题根源在于模型权重精度与PEFT版本的兼容性。具体表现为:
- 在PEFT 0.7.0版本中引入的重大重构(PR #1106)改变了参数处理方式
- 当使用float16(半精度)权重时,会导致梯度更新异常
- 问题在第一个优化器步骤后开始显现(通常在8个梯度累积步骤后)
解决方案
针对这一问题,开发者提供了两种有效的解决方案:
方案一:使用bfloat16精度
将模型权重设置为bfloat16精度可以完全解决问题。具体实现方式:
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16, # 关键设置
low_cpu_mem_usage=True,
device_map="cuda"
)
同时在TrainingArguments中启用bfloat16:
args = TrainingArguments(
bf16=True, # 启用bfloat16
...其他参数...
)
方案二:强制转换为float32
对于不支持bfloat16的旧GPU设备,可以将PEFT参数显式转换为float32:
model = get_peft_model(model, config)
for param in model.parameters():
if param.requires_grad:
param.data = param.data.float() # 转换为float32
最佳实践建议
- 在使用PEFT进行微调时,应特别注意模型权重精度设置
- 对于ChatGLM3-6B这类大型模型,推荐优先使用bfloat16精度
- 定期检查训练过程中的损失曲线,异常时应及时中断训练
- 保持PEFT库版本更新,但升级后应进行充分测试
总结
这一问题揭示了深度学习框架中精度处理的重要性,特别是在参数高效微调场景下。通过合理选择权重精度,开发者可以避免模型训练失败的风险,确保微调过程顺利进行。对于使用ChatGLM3-6B和PEFT的研究人员和开发者,建议采用上述解决方案来保证模型训练的有效性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217