vllm-project/aibrix项目中的网关日志刷屏问题分析与解决方案
在vllm-project/aibrix项目的网关组件运行过程中,我们发现了一个值得关注的技术问题:当Pod处于终止状态时,日志系统会出现异常刷屏现象。这个问题虽然不会影响系统的可用性,但会导致日志系统产生大量冗余信息,严重影响日志的可读性和后续的问题排查效率。
问题现象分析
当Kubernetes中的Pod进入终止状态时,网关组件会持续尝试向引擎发送信号。在这个过程中,系统会返回非Prometheus风格的指标数据,导致日志中不断输出类似以下的错误信息:
===================
E1127 21:28:32.332599 1 cache.go:551] <!doctype html>
<html lang=en>
<title>500 Internal Server Error</title>
<h1>Internal Server Error</h1>
这种错误信息的大量重复输出不仅占用了宝贵的日志存储空间,还使得真正需要关注的关键日志信息被淹没在海量的重复内容中。
问题根源探究
经过深入分析,我们发现问题的根本原因在于:
-
健康检查机制不完善:当前系统在Pod终止状态下仍然会尝试获取指标数据,而此时服务可能已经处于不可用状态。
-
错误处理不够优雅:当遇到非预期响应时,系统没有进行适当的错误处理和日志抑制。
-
指标格式兼容性问题:系统期望获取Prometheus风格的指标数据,但在异常状态下返回的是HTML格式的错误页面。
解决方案设计
针对这个问题,我们提出了一个简单而有效的解决方案:
-
跳过不健康Pod:在Pod进入终止状态后,系统将不再尝试从这些Pod获取指标数据。这样可以避免无效的请求和错误日志的产生。
-
保持数据平面查询功能:虽然停止了对终止Pod的指标采集,但数据平面的查询功能仍然保持正常工作,确保系统的核心功能不受影响。
实现细节
在具体实现上,我们主要做了以下改进:
-
增加了Pod状态检查逻辑,当检测到Pod处于Terminating状态时,跳过该Pod的指标采集。
-
优化了错误处理流程,对于非Prometheus格式的响应进行适当处理,避免产生大量错误日志。
-
保持了与现有系统的兼容性,确保修改不会影响正常的数据平面查询功能。
预期效果
实施这个解决方案后,我们预期将获得以下改进:
-
日志系统将变得更加清晰和有用,不再被大量的重复错误信息所干扰。
-
系统资源使用效率提高,减少了不必要的网络请求和日志写入操作。
-
运维人员能够更快速地定位和解决实际问题,提高系统的可维护性。
这个改进虽然看似简单,但对于提升系统的整体可观测性和运维效率有着重要意义。它体现了在分布式系统设计中,对边缘情况和异常处理的重视,是构建健壮系统的重要一环。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00